23 research outputs found

    The MIDAS telescope for microwave detection of ultra-high energy cosmic rays

    Full text link
    We present the design, implementation and data taking performance of the MIcrowave Detection of Air Showers (MIDAS) experiment, a large field of view imaging telescope designed to detect microwave radiation from extensive air showers induced by ultra-high energy cosmic rays. This novel technique may bring a tenfold increase in detector duty cycle when compared to the standard fluorescence technique based on detection of ultraviolet photons. The MIDAS telescope consists of a 4.5 m diameter dish with a 53-pixel receiver camera, instrumented with feed horns operating in the commercial extended C-Band (3.4 -- 4.2 GHz). A self-trigger capability is implemented in the digital electronics. The main objectives of this first prototype of the MIDAS telescope - to validate the telescope design, and to demonstrate a large detector duty cycle - were successfully accomplished in a dedicated data taking run at the University of Chicago campus prior to installation at the Pierre Auger Observatory.Comment: 13 pages, 18 figure

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory

    Get PDF
    We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than similar to (0.06 – 5) x 10(-4) Mpc(-3) at 95% CL, depending on the magnitude of the magnetic defections. Similar bounds, in the range (0.2 – 7) x 10(-4) Mpc(-3), were obtained for sources following the local matter distribution.We are very grateful to the following agencies and organizations for financial support,: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La, Provincia de Ailendoza. Municipalidad de Malargile. INDM floldings and Valle Las Lenas, in gratitude for their continuing cooperation over land access. Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e 'Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacdo de Amparo a Pesquisa do Est ado de Rio de Janeiro (FAP HRJ), Fundacdo de Amparo Pesquisa do Estado de Sdo Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (IVICT), Brazil; AVCR AVOZ10100502 and AVOZ10100522, GAAV KJB100100904, AISMT-CR LA08016, LG11044, 1VIEB111003, MSAI0021620859, LA08015, TACR TA01010517 and GA U.K. 119810, Czech Republic; Centre de Calcul I-N2P3/CNRS, Centre National de la -Recherche Scientifique ((1 NRS), Conseil Regional Ile-de-France, f)epartement, Physique Nuclealre et Corpusculaire (I N( Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DITG), Finanzministerium Baden-Wurttemberg, flelmholtz-Gemeinschaft Deutscher Forschungszentren Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerimn fur Wissenschaft, Forschung und Kunst, Baden-WUrttemberg, Germany; Istituto Nazion ale di Fisica Nucleare (INFN), Ministero dell'Istruzione, delhLniversita e della Ricerca (MIUR), Italy: Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onden s Cultuur on NVetenschap Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Rmdamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. N N202 200239 and N N202 207238, Poland; Portuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISETD1 partnership projects nr.20/2012 and nr.194/2012, project nr.1 /ASPERA2/20I2 ERA-NET and PN-IIRU-PD-2011-3-0145-17, Romania; Ministry for Higher Education, Science, and 'Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (( PAN), X unta de Galicia Spain; Science and Technology Facilities Council, United kingdom; Department of Luergy, Contract Nos. DE-ACO2-07(11-111359, DE-FR02-04E1(41300, DE-FG02-99E1(41107, National Science Foundation, Grant No. 0450696, The Grainger Foundation U.S.A.; NAFOSTED, Vietnam; Marie Curie-IRSES/HPLANET, European Particle Physics Latin American Network, European Union 7th Frarneworlc Program. Grant No. IIRSES-2009-GA-246806; and UNESCO.Peer reviewe

    Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    Get PDF
    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km(2) of the Pierre Auger Observatory twice per hour with a spatial resolution of similar to 2.4 km by similar to 5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories. (C) 2013 Elsevier B.V. All rights reserved.The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and adminis- trative staff in MalargĂŒe. We are very grateful to the following agencies and organiza- tions for financial support: ComisiĂłn Nacional de EnergĂ­a AtĂłmica, FundaciĂłn Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de MalargĂŒe, NDM Holdings and Valle Las Leñas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento CientĂ­fico e TecnolĂłgico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo Ă  Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundação de Amparo Ă  Pesquisa do Estado de SĂŁo Paulo (FAPESP), MinistĂ©rio de CiĂȘncia e Tecnolo- gia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB100100904, MSMT-CR LA08016, LG11044, MEB111003, MSM0021620859, LA08015, TACR TA01010517 and GA UK 119810, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre Na- tional de la Recherche Scientifique (CNRS), Conseil RĂ©gional Ile-de- France, DĂ©partement Physique NuclĂ©aire et Corpusculaire (PNC- IN2P3/CNRS), DĂ©partement Sciences de l’Univers (SDU-INSU/ CNRS), France; Bundesministerium fĂŒr Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministeri- um Baden-WĂŒrttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fĂŒr Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fĂŒr Wissenschaft, Forschung und Kunst, Baden-WĂŒrttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell’Istruzione, dell’UniversitĂ  e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y TecnologĂ­a (CONACYT), Mexico; Ministerie van Ond- erwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wet- enschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. N N202 200239 and N N202 207238, Poland; Portuguese national funds and FEDER funds with- in COMPETE - Programa Operacional Factores de Competitividade through Fundação para a CiĂȘncia e a Tecnologia, Portugal; Roma- nian Authority for Scientific Research ANCS, CNDI-UEFISCDI part- nership projects nr.20/2012 and nr.194/2012, project nr.1/ ASPERA2/2012 ERA-NET and PN-II-RU-PD-2011-3-0145-17, Roma- nia; Ministry for Higher Education, Science, and Technology, Slove- nian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Ciencia e InnovaciĂłn and Consolider-Ingenio 2010 (CPAN), Xunta de Galicia, Spain; The Leverhulme Foundation, Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE- FR02-04ER41300, DE-FG02-99ER41107, National Science Founda- tion, Grant No. 0450696, The Grainger Foundation USA; NAFO- STED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO. We would like to thank the former Michigan Tech students: Nathan Kelley-Hoskins, Kyle Luck and Arin Nelson for their impor- tant contribution to the development of this paper. We would like to thank NOAA for the GOES satellite data that we freely down- loaded from their website. Also, we would like to mention in these acknowledgments Dr. Steve Ackerman and Dr. Tony Schreiner for very valuable conversationsPeer reviewe

    Constraints on the origin of cosmic rays above 101810^{18} eV from large scale anisotropy searches in data of the Pierre Auger Observatory

    Get PDF
    A thorough search for large scale anisotropies in the distribution of arrival directions of cosmic rays detected above 101810^{18} eV at the Pierre Auger Observatory is reported. For the first time, these large scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 101810^{18} eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions.Peer Reviewe

    Constraints on cosmology from the cosmic microwave background power spectrum measured by the Planck mission

    No full text
    The Planck satellite has just released an exquisite full sky measurement of the microwave sky in 9 frequency bands. In particular, the temperature fluctuations in the cosmic microwave background (CMB) radiation have been observed with high sensitivity and angular resolution in the 100, 143 and 217 GHz channels. The CMB power spectrum is among the most informative and robust probes in cosmology. Its recent measurement with cosmic variance precision over a wide range of angular scales by the Planck mission has provided a stress test for the standard six parameters LCDM model. I will review some of the cosmological results derived from the Planck CMB temperature power spectrum and, in particular, will discuss some of the implications regarding the Early Universe and neutrino physics

    Constraints on cosmology from the cosmic microwave background power spectrum measured by the Planck mission

    No full text
    The Planck satellite has just released an exquisite full sky measurement of the microwave sky in 9 frequency bands. In particular, the temperature fluctuations in the cosmic microwave background (CMB) radiation have been observed with high sensitivity and angular resolution in the 100, 143 and 217 GHz channels. The CMB power spectrum is among the most informative and robust probes in cosmology. Its recent measurement with cosmic variance precision over a wide range of angular scales by the Planck mission has provided a stress test for the standard six parameters LCDM model. I will review some of the cosmological results derived from the Planck CMB temperature power spectrum and, in particular, will discuss some of the implications regarding the Early Universe and neutrino physics

    Arbetslönerna inom biltrafiken under 1985, 3 kvartalet

    Get PDF
    Suomen virallinen tilasto (SVT
    corecore