23 research outputs found
Revisiting the Complementarity between Education and Training: The Role of Personality, Working Tasks and Firm Effects
This paper addresses the question to which extent the complementarity between education and training can be attributed to differences in observable characteristics, i.e. to individual, job and firm specific characteristics. The novelty of this paper is to analyze previously unconsidered characteristics, in particular, personality traits and tasks performed at work which are taken into account in addition to the standard individual specific determinants. Results show that tasks performed at work are strong predictors of training participation while personality traits are not. Once working tasks and other job related characteristics are controlled for, the skill gap in training participation drops considerably for off-the-job training and vanishes for on-the-job training
Genetic correlations and genome-wide associations of cortical structure in general population samples of 22824 adults
Cortical thickness, surface area and volumes vary with age and cognitive function, and in neurological and psychiatric diseases. Here we report heritability, genetic correlations and genome-wide associations of these cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprises 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank. We identify genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/ÎČ-catenin, TGF-ÎČ and sonic hedgehog pathways. There is enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging
Cerebral small vessel disease genomics and its implications across the lifespan
White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (pâ=â2.5Ă10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.Peer reviewe
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
Author Correction:Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function
Christina M. Lill, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this article. This has now been corrected in both the PDF and HTML versions of the article
An Electrically Conducting ThreeâDimensional IronâCatecholate Porous Framework
We report the synthesis of a unique cubic metalâorganic framework (MOF), FeâHHTPâMOF, comprising hexahydroxytriphenylene (HHTP) supertetrahedral units and Fe(III) ions, arranged in a diamond topology. The MOF is synthesized under solvothermal conditions, yielding a highly crystalline, deep black powder, with crystallites of 300â500â
nm size and tetrahedral morphology. Nitrogen sorption analysis indicates a highly porous material with a surface area exceeding 1400â
m(2)âg(â1). Furthermore, FeâHHTPâMOF shows broadband absorption from 475 up to 1900â
nm with excellent absorption capability of 98.5â% of the incoming light over the visible spectral region. Electrical conductivity measurements of pressed pellets reveal a high intrinsic electrical conductivity of up to 10(â3)â
Sâcm(â1). Quantum mechanical calculations predict FeâHHTPâMOF to be an efficient electron conductor, exhibiting continuous chargeâcarrier pathways throughout the structure
Oriented Films of Conjugated 2D Covalent Organic Frameworks as Photocathodes for Water Splitting
Light-driven water electrolysis at a semiconductor surface is a promising way to generate hydrogen from sustainable energy sources, but its efficiency is limited by the performance of available photoabsorbers. Here we report the first time investigation of covalent organic frameworks (COFs) as a new class of photoelectrodes. The presented 2D-COF structure is assembled from aromatic amine-functionalized tetraphenylethylene and thiophene dialdehyde building blocks to form conjugated polyimine sheets, which Ï-stack in the third dimension to create photoactive porous frameworks. Highly oriented COF films absorb light in the visible range to generate photo-excited electrons that diffuse to the surface and are transferred to the electrolyte resulting in proton reduction and hydrogen evolution. The observed photoelectrochemical activity of the 2D-COF films and their photocorrosion stability in water pave the way for a novel class of photoabsorber materials with versatile optical and electronic properties that are tunable through the selection of appropriate building blocks and their three-dimensional stacking
Oriented Films of Conjugated 2D Covalent Organic Frameworks as Photocathodes for Water Splitting
Light-driven water electrolysis at a semiconductor surface is a promising way to generate hydrogen from sustainable energy sources, but its efficiency is limited by the performance of available photoabsorbers. Here we report the first time investigation of covalent organic frameworks (COFs) as a new class of photoelectrodes. The presented 2D-COF structure is assembled from aromatic amine-functionalized tetraphenylethylene and thiophene dialdehyde building blocks to form conjugated polyimine sheets, which Ï-stack in the third dimension to create photoactive porous frameworks. Highly oriented COF films absorb light in the visible range to generate photo-excited electrons that diffuse to the surface and are transferred to the electrolyte resulting in proton reduction and hydrogen evolution. The observed photoelectrochemical activity of the 2D-COF films and their photocorrosion stability in water pave the way for a novel class of photoabsorber materials with versatile optical and electronic properties that are tunable through the selection of appropriate building blocks and their three-dimensional stacking