8 research outputs found

    Brush Management/Water Yield Feasibility Study for Four Watersheds In Texas

    Get PDF
    The Soil and Water Assessment Tool (SWAT) model was used to simulate the effects of brush removal on water yield in four watersheds in Texas for 1960 through 1999. Methods used in this study were similar to methods used in a previous study (TAES, 2000) in which 8 watersheds were analyzed. Landsat 7 satellite imagery was used to classify land use, and the 1:24,000 scale digital elevation model (DEM) was used to delineate watershed boundaries and subbasins. SWAT was calibrated to measured stream gauge flow and reservoir storage. Brush removal was simulated by converting all heavy and moderate categories of brush (except oak) to open range (native grass). Simulated changes in water yield due to brush treatment varied by subbasin, with all subbasins showing increased water yield as a result of removing brush. Average annual water yield increases ranged from about 111,000 gallons per treated acre in the Fort Phantom Hill watershed to about 178,000 gallons per treated acre in the Palo Pinto watershed. Water yield increases per treated acre were similar to a previous study (COE, 2002), but higher than TAES (2000). As in previous studies, there was a strong, positive correlation between water yield increase and precipitation. BACKGROUND Increases in brush area and density may contribute to a decrease in water yield, possibly due to increased evapotranspiration (ET) on watersheds with brush as compared to those with grass (Thurow, 1998; Dugas et al., 1998). Previous modeling studies of watersheds in Texas (Upper Colorado River Authority, 1998; TAES, 2000) indicated that removing brush might result in a significant increase in water yield. During the 2000-2001 legislative session, the Texas Legislature appropriated funds to study the effects of brush removal on water yield in watersheds above Lake Arrowhead, Lake Brownwood, Lake Fort Phantom Hill, and Lake Palo Pinto (Figure 1-1). The hydrologi

    Ecosystem and Wildlife Implications of Brush: Management System Designed to Improve Water Runoff and Percolation

    Get PDF
    With the settlement of Texas and establishment of ranchers to produce cattle, there was an effort to maximize beef production. This caused serious overgrazing. In addition, there was a reduced incidence of fires across the landscape to clear out brush. These factors led to deterioration of the grazing lands and provided an opportunity for invasive intrusion by brush and other species onto the land and riparian zones. There has been a large-scale conversion from grasslands and savannahs to wildlands over the last 150 years (Scholes and Archer, 1997). The overall impacts are significantly impaired uplands and reduced percolation and surface flow of water from rainfall which caused changes and loss in basic aquatic and terrestrial habitat. The State of Texas adopted a program to study and implement brush management systems across the state to improve the water availability in streams, rivers, reservoirs and aquifers, as well as to improve the rangelands. The feasibility studies have shown great promise for improving ranchland and improving the water situation. However, there is less known about the aquatic and wildlife species response implications of brush management. Certainly, there are opportunities for improving the viability of an ecosystem through brush management strategies and continuing management practices. The purpose of this study was to evaluate the changes in hydrology and biological diversity associated with brush management in two watersheds where significant data was already available. This study focused on assessing the aquatic and terrestrial species implications related to specified brush management strategies over time. This involved an integrated analysis including modeling of the landscape, assessing biological diversity and developing economic implications for the two watersheds (Twin Buttes and Edwards regions). Thus, this study is comprised of three parts: modeling of brush management strategies temporally, assessing biological diversity (aquatic and terrestrial) and estimating economic implications. This represents a complex analysis involving variable units and multiple disciplines. Previous feasibility studies of brush removal have been targeted at maximizing water runoff. This analysis is an extension that is designed to examine the implications of brush management under a more restrictive set of brush removal criteria that were chosen based upon wildlife considerations. To achieve the integration of hydrologic modeling, range ecology, and economic implications, there were three team meetings bringing together all components to review status and set priorities for the remainder of the work. In addition, scientists in the three basic groups of specialization interacted daily along with representatives of the Corps of Engineers to assure that each decision was reflected in other parts of the analyses. The major addition of this analysis to brush management feasibility studies being conducted as part of the Texas brush management plan is the consideration of wildlife and aquatic biota and assessing changes in biological diversity likely to result from alternative brush management scenarios

    Of Europe

    Get PDF

    The Efflux of Amino Acids from the Olfactory Organ of the Spiny Lobster: Biochemical Measurements and Physiological Effects

    No full text
    Volume: 179Start Page: 374End Page: 38

    Two Victorian Egypts of Herodotus

    Get PDF
    corecore