86 research outputs found

    Plant Metabolic Pathways in MetaCyc and SolCyc

    Get PDF
    MetaCyc is a metabolic encyclopedia of experimentally validated biochemical pathways curated from scientific literature, that spans all organisms, with an emphasis on plants and microbes. The Pathway tools is a complex curation software suite that enables curation of reactions, construction of pathways and annotation with one or more representative enzymes, that include information such as substrate specificity, kinetic properties, activators, inhibitors, cofactor requirements, genes if cloned and links to external databases. In addition curators are able to provide concise, review-level summaries and extensive literature citations. The present database release includes more than 1200 pathways from more than 1549 organisms, 7312 reactions, 5127 enzymes, 4748 genes, 7234 chemical compounds, curated from 17916 citations. The MetaCyc database is the reference database on which the pathways are predicted from annotated genomes by PathoLogic called Pathway/genome Databases (PGDB's). The Biocyc Database ("biocyc.org":http://biocyc.org) has a collection over 300 PGDB's. Each BioCyc Database describes the genome and predicted metabolic pathways of a single organism, which are then taken up by interested groups for curation. SolCyc is one such PGDB, developed for the clade oriented Solanceae Genomics Network (SGN) database. It has predicted metabolic pathway databases of significant species belonging to Solanaceae and includes Lycocyc(tomato), Solacyc (eggplant), Nicotianacyc (tobacco),Petuniacyc (Petunia), Capcyc (Capsicum) , Potatocyc (potato). An interactive webinterface has been developed for the seamless flow of information from the SGN phenotype and locus database with SolCyc. This facilitates researchers with the capacity to search for underlying metabolic pathway information of genes and phenotypes that has been curated into the SolCyc database

    MetaCyc: a multiorganism database of metabolic pathways and enzymes

    Get PDF
    MetaCyc is a database of metabolic pathways and enzymes located at . Its goal is to serve as a metabolic encyclopedia, containing a collection of non-redundant pathways central to small molecule metabolism, which have been reported in the experimental literature. Most of the pathways in MetaCyc occur in microorganisms and plants, although animal pathways are also represented. MetaCyc contains metabolic pathways, enzymatic reactions, enzymes, chemical compounds, genes and review-level comments. Enzyme information includes substrate specificity, kinetic properties, activators, inhibitors, cofactor requirements and links to sequence and structure databases. Data are curated from the primary literature by curators with expertise in biochemistry and molecular biology. MetaCyc serves as a readily accessible comprehensive resource on microbial and plant pathways for genome analysis, basic research, education, metabolic engineering and systems biology. Querying, visualization and curation of the database is supported by SRI's Pathway Tools software. The PathoLogic component of Pathway Tools is used in conjunction with MetaCyc to predict the metabolic network of an organism from its annotated genome. SRI and the European Bioinformatics Institute employed this tool to create pathway/genome databases (PGDBs) for 165 organisms, available at the website. These PGDBs also include predicted operons and pathway hole fillers

    Changes in the Frontotemporal Cortex and Cognitive Correlates in First-Episode Psychosis

    Get PDF
    Background: Loss of cortical volume in frontotemporal regions has been reported in patients with schizophrenia and their relatives. Cortical area and thickness are determined by different genetic processes, and measuring these parameters separately may clarify disturbances in corticogenesis relevant to schizophrenia. Our study also explored clinical and cognitive correlates of these parameters.Methods: Thirty-seven patients with first-episode psychosis (34 schizophrenia, 3 schizoaffective disorder) and 38 healthy control subjects matched for age and sex took part in the study. Imaging was performed on an magnetic resonance imaging 1.5-T scanner. Area and thickness of the frontotemporal cortex were measured using a surface-based morphometry method (Freesurfer). All subjects underwent neuropsychologic testing that included measures of premorbid and current IQ, working and verbal memory, and executive function.Results: Reductions in cortical area, more marked in the temporal cortex, were present in patients. Overall frontotemporal cortical thickness did not differ between groups, although regional thinning of the right superior temporal region was observed in patients. There was a significant association of both premorbid IQ and IQ at disease onset with area, but not thickness, of the frontotemporal cortex, and working memory span was associated with area of the frontal cortex. These associations remained significant when only patients with schizophrenia were considered.Conclusions: Our results suggest an early disruption of corticogenesis in schizophrenia, although the effect of subsequent environmental factors cannot be excluded. In addition, cortical abnormalities are subject to regional variations and differ from those present in neurodegenerative diseases

    The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases

    Get PDF
    The MetaCyc database (MetaCyc.org) is a comprehensive and freely accessible resource for metabolic pathways and enzymes from all domains of life. The pathways in MetaCyc are experimentally determined, small-molecule metabolic pathways and are curated from the primary scientific literature. With more than 1400 pathways, MetaCyc is the largest collection of metabolic pathways currently available. Pathways reactions are linked to one or more well-characterized enzymes, and both pathways and enzymes are annotated with reviews, evidence codes, and literature citations. BioCyc (BioCyc.org) is a collection of more than 500 organism-specific Pathway/Genome Databases (PGDBs). Each BioCyc PGDB contains the full genome and predicted metabolic network of one organism. The network, which is predicted by the Pathway Tools software using MetaCyc as a reference, consists of metabolites, enzymes, reactions and metabolic pathways. BioCyc PGDBs also contain additional features, such as predicted operons, transport systems, and pathway hole-fillers. The BioCyc Web site offers several tools for the analysis of the PGDBs, including Omics Viewers that enable visualization of omics datasets on two different genome-scale diagrams and tools for comparative analysis. The BioCyc PGDBs generated by SRI are offered for adoption by any party interested in curation of metabolic, regulatory, and genome-related information about an organism

    CyanoCyc cyanobacterial web portal

    Get PDF
    CyanoCyc is a web portal that integrates an exceptionally rich database collection of information about cyanobacterial genomes with an extensive suite of bioinformatics tools. It was developed to address the needs of the cyanobacterial research and biotechnology communities. The 277 annotated cyanobacterial genomes currently in CyanoCyc are supplemented with computational inferences including predicted metabolic pathways, operons, protein complexes, and orthologs; and with data imported from external databases, such as protein features and Gene Ontology (GO) terms imported from UniProt. Five of the genome databases have undergone manual curation with input from more than a dozen cyanobacteria experts to correct errors and integrate information from more than 1,765 published articles. CyanoCyc has bioinformatics tools that encompass genome, metabolic pathway and regulatory informatics; omics data analysis; and comparative analyses, including visualizations of multiple genomes aligned at orthologous genes, and comparisons of metabolic networks for multiple organisms. CyanoCyc is a high-quality, reliable knowledgebase that accelerates scientists’ work by enabling users to quickly find accurate information using its powerful set of search tools, to understand gene function through expert mini-reviews with citations, to acquire information quickly using its interactive visualization tools, and to inform better decision-making for fundamental and applied research

    IQ Trajectory, Cognitive Reserve, and Clinical Outcome Following a First Episode of Psychosis: A 3-Year Longitudinal Study

    Get PDF
    Comparison of current and estimated premorbid IQ in schizophrenia suggests that there are subgroups with low IQ, deteriorated IQ (DIQ), or preserved IQ and that this is established by psychosis onset. There are no controlled studies examining the trajectory of these IQ subgroups longitudinally or their relationship with clinical and social outcomes. Of 129 individuals with first-episode schizophrenia or schizoaffective disorder, 25% showed stable low IQ, 31% showed stable IQ in the average/high range, and 44% demonstrated intellectual deterioration by 10 points or more. Patients in the low and deteriorated groups were equally impaired on tests of memory and executive function compared with the preserved average/high-IQ group and controls and showed more negative and disorganization symptoms than the preserved average/high-IQ group. Sixty patients and 27 controls were assessed again 1 and 3 years later. There was no evidence that those with IQ deterioration at baseline continued on a declining cognitive trajectory or that those with preserved average/high IQ experienced subsequent IQ decline. The low IQ group showed no change in IQ, whereas both the DIQ and the preserved IQ groups improved. However, the rate of improvement of these 2 subgroups was no greater than that of the healthy controls, suggesting that this reflected practice effects. Both the low and the deteriorated groups had longer index admissions, more core negative symptoms, and worse occupational outcomes at 3 years. These data suggest that following psychosis onset, IQ is stable and that it is IQ at psychosis onset rather than premorbid IQ predicts a more severe illness
    corecore