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Abstract

A novel data set, GeneNot&éne Namal TissueExpression), was produced to portray complete gene expression profiles
in healthy human tissues using the Affymetrix GeneChip HG-U95 set, which includes 62 839 probe-sets. The hybridization
intensities of two replicates were processed and analyzed to yield the complete transcriptome for twelve human tissues.
Abundant novel information on tissue specificity provides a baseline for past and future expression studies related to diseases
The data is posted in GeneNotbttp://genecards.weizmann.ac.il/genenpta/ widely used compendium of human genes
(http://bioinfo.weizmann.ac.il/genecajd3o cite thisarticle: O. Shmueli et al., C. R. Biologies 326 (2003).
0 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

GeneNote : profils d’expression complets dans des tissus humains normauwtn nouveau jeu de données, GeneNote
(Gene Namal TissueExpression), a été produit pour décrire les profils d’expression complets des génes dans les tissus humains
sains, en utilisant les puces GeneChip HG-U95 d’'Affymetrix, qui comprennent 62 839 jeux de sondes. Les intensités d’hybrida-
tion de deux réplicats ont été traités et analysés pour décrire le transcriptome complet pour douze tissus humains. Les donnée
nouvelles abondantes sur la spécificité tissulaire fournissent une base de référence pour les études d’expression passées et futt
en relation avec les maladies. Les données sont accessibles dans GehéfNntgepecards.weizmann.ac.il/genenotele
compilaton de génes humains largement utilis&gp(//bioinfo.weizmann.ac.il/genecajdBour citer cet article: O. Shmudli
etal., C. R. Biologies 326 (2003).
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1. Introduction analysis is essential for generating comprehensive
transcription analyses.

The human body orchestrates gene expression by
co-regulating genes whose products function together. .
Many challenges are posed due to the vast amount of2 Materials and methods
genomic and expression data that has to be divided
into functional biological groups using biological, sta-
tistical and computational tools. Many past studies
centered on comparisons of diseased to healthy tis-
sues, and were limited to a subset of human genes.

High-density oligonucleotide arrays enable highly
parallel and comprehensive studies of gene expres-
sion. The transcription patterns produced, known as
the expression profile, depict the subset of MRNA syn-
thesized in a certain cell or tissue. At its most fun-
damental level, the expression profile describes, in a
guantitative way, which genes are expressed in a par-
ticular tissue. More sophisticated issues such as novel
gene functional characterization, gene identification

PolyA+ RNA samples from twelve normal hu-
man tissues were purchased from Clontech (Palo
Alto, CA). This collection of major human tissues in-
cludes: Bone marrow (catalog number: 6573-1), brain
(6516-1), heart (6533-1), kidney (6538-1), liver
(6510-1), lung (6524-1), pancreas (6539-1), prostate
(6546-1), skeletal muscle (6541-1), spinal cord
(6593-1), spleen (6542-1) and thymus (6536-1).

Preparation and hybridization of cRNA were done
according to the manufacture’s instructions [13]. Suf-
ficient hybridization cocktail solution for five inde-
pendent hybridizations reactions (i.e. the full set HG-
U95A-E) was prepared. The hybridization reactions of
e . . i . all the arrays in the set were carried out simultane-
n blqlpglgal pathways, genetic variation analysis or ously. The mRNA from each tissue was reacted in du-
!dent.|f|'cat|on of'drug targets could be surveyeq by us- plicates against the full human Affymetrix arrays set
ing bioinformatics tools such as cluster analysis ([1,2] (HG-U95A-E) to yield two sets of results. Th&/3

and self organizing-maps [3,4]). _ signal ratios of GAPDH were always below the value
The construction of gene expression databasesof 3 as expected for a fine labeling reaction.

is a high priority of today's research community.  Arrays were analyzed and expression value was
Such databases, closely integrated with other types .,iculated for each gene by using Microarray Suit

of genomic information, promise not only to enhance (MAS) version 5.0 software (Affymetrix, Santa Clara,
our understanding of many fundamental biological CA). Expression values for each gene, calighal,
processes, but also to accelerate drug discovery andyere calculated using the MAS 5.0 software with its
lead to customized diagnosis and treatment of diseaseygfaylt parameter settings. Scaling was not done via
[5.6]. An example generated by our own group is 5 \MAS 5.0 option. Instead, we normalized our data
presented the recent releases of GeneCards, whichys follows: the intensities of each array were 1lpg
contain expression data both from array experiments transformed and scaled to a constant reference value
and from ‘electronic Northern’ analyses [7]. (global normalization). This reference value was the
As a significant extension of previous relevant mean of all log intensities in all of the tissues. Present
efforts, we describe a whole-genome repertoire of calls percentages are presented in Fig. 2 for all samples

expression profiles in twelve normal human tissues. according to the array type (see also Results and
Previously, only studies that compare a single diseasedDiscussion).

tissue with a healthy one were preformed [8-10].

Other surveys that were done on healthy human

tissues were limited to one array type (i.e. HG- 3. Results and discussion

U95A [11], Hu6800 [12]). Here, for the first time, we

present the expression analysis of the full complement  Whole-genome gene expression profiles were gen-
of more than 60000 gene and EST representationserated from the normalized signal values. The set of
in 12 normal human tissues. It is shown that the 12 tissue expression values for a given gene was de-
additional, less characterized genes harbor importantfined as itdissue vector. Normalization was used to al-
information, and that a whole-genome expression low a meaningful comparison among different tissues.
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Fig. 1. Intensity distribution in the different arrays set in heart sam- Fig. 2. Percent of present calls in all samples according to the array

ple. Density plots of one heart sample before and after normaliza- type. ‘Present’ call percentages were taken from the MAS 5.0 report

tion are presented. Panglpresents the density plot for lggraw files and are presented for the various array types in all of the

signals while paneB presents the normalized signals. samples. The A-E letters represent the array type. The following
are the tissue samples shortclB81R for bone marrowBRN for

; : ; e iatrify . Drain, HRT for heart, KDN for kidney, LNG for lung, LVR for
Fig. 1 shows a comparison of the intensities distribu liver, MSL for muscle,PNC for pancreasPST for prostate SPC

tion of one heart sample for the five different arrays, for spinal cord SPL for spleen, andMS for thymus. The numbers
before and after normalization. In this density plot, it attached to the sample name represent the replicate number.

is observed that the highest intensities are in arrays A

and B, while arrays C, D and E produce considerably

lower intensities. These results are similar to the ear- . 141 1n thi define ti ifici

lier observations by Bakay et al. [8]. Aspects of the t|on_[ ]" n this p,aper_, we detine FISSUG spect icity as
decreased array intensities are also presented in Fig. avinga present’ callin only one tissue. Itis obse_rved
which displays the percentage of ‘present calls along that l?r.am and thymus had'the highest number of tissue
the samples for each array type. For example, itis well SPECIfiC genes, almost twice the number observed for
observed that the percentage of ‘present calls in array other tissues. Th.e propensity of tissue specific genes is
D is consistently below 10%. This could be the result N0t much lower in arrays B-E when compared to ar-
of intrinsic hybridization differences. It could also be @Y A, suggesting that important information also re-
due to the average quality of the probe-sets, since mostSides within the former. However, one should also take
of the well-studied genes are found on array A while into consideration that the amount of ‘present’ calls is
arrays B to E are constructed with increasing propen- reduced on arrays C—E (Fig. 2). Consequently, the in-
sities of less well-characterized ESTs (Expressed Se-creased effect of tissue specificity may be an artifact
quence Tags). of the array quality and design.

Tissue specific genes are supposed to have a sig- The MAS 5.0 package is one of the most commonly
nificant role in tissue functionality. Hence, we exam- used software tools for analyzing high-density micr-
ined the counts of such genes in the different tissue roarray results. However its use of ‘present-absent’
samples (Fig. 3). One representative sample for eachcalls is a controversial issue in the literature [15-17].
tissue was chosen, and tissue specific genes were dedo address this, we have begun to develop alternative
termined on the basis of the ‘absent—present’ calls of methods utilizing a normalized entropy-related Tissue
the Affymetrix MAS 5.0 software. A similar criterion  Specificity Index (TSI), computed directly from the
was used in the past for housekeepings genes selectissue vectors. This algorithm is currently being evalu-
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Fig. 3. Tissue specific genes in all of the tissues sorted by the array
set. Tissue specific genes were found based on the ‘absent—present’

call of the Affymetrix MAS 5.0 software. Tissue specificity was
defined as having a ‘present’ call in only one tissue. One sample
for each tissue was chosen for the search. The tissue specific genes
distribution on the arrays set, HG-U95A-E is shown for all tissues.

ated as compared to other methods (O. Shmueli et al.,
manuscript in preparation).
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BMR - Bone marrow
SPL - Spleen
TMS - Thymus
BRN - Brain
SPC - Spinal cord
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LVR - Liver
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PST - Prostate

KND - Kidney
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Criticism has also been directed towards the sub-
traction of the mismatch probes (MM) from the perfect
match probes (PM) creating PM-MM values as an un- _ _
derlying computation for assessing background levels Fig. 4. Tissue vector for the gene APCS [21]. Tissue vector for

. . the gene APCS was calculated from the normalized signals and
and signal computations. Several methods have beeng resented in a graphical way (pary). Tissues were grouped
developed to evaluate the background level of inten- according to their origin and the groups colored accordingly (e.g.,
sity above which the value truly reflects the gene ex- nerve tissues in green). The range between the lower and higher
pression vale [15,16,16-20] Some of these models o331 s ot B vk o it o colores
Tit Iog(lf’M-Bgckgrognd), instead of PM-MM, thoth with a special root scale [7}.]’ = X(%/B’)) wherpeB = Iogzlor.yPaneI
in low-intensity regions the current models are still g presents the tissue vector colored map.
very questionable [16]. Consequently, the validity of
the zone of low-intensity probes, which is close to the
background level, remains undetermined. different orders of magnitude. This affords an effective

The tissue vectors for each gene were drawn on a view-at-a-glance of the tissue vectors.
root scale representation [7] as exemplified in Fig. 4 A major aim of this work is to enable prediction of
for the gene APCS (Amyloid P-component, serum) the function of novel genes based on their expression
[21]. APCS is a precursor for amyloid component P profiles. It is expected that genes that display similar
which is found in basement membrane and associatedexpression patterns are functionally related, since
with amyloid deposits. A root scale enables one to they are co-regulated under all of the developmental
visualize several orders of magnitude, similar to a conditions [22,23]. On the basis of the expression
logarithmic scale, but preserves some advantage of profile similarities, ten tissues were ordered in a tissue
the linear scale, i.e. a differential increase with the correlation matrix (Fig. 5). It is clearly seen that

O Min-max range for duplicates
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Fig. 5. Tissue correlation matrix. Tissue vectors of the normalized
signals (log transformed and scaled) were used to calculate corre-
lations between twenty tissue samples. The correlations were cal-
culated using the Pearson correlation coefficient and presented in a
tissue vector correlation matrix. Different correlation levels are pre-
sented according to the color scale on the right. PArmeesents the
tissue vector correlation matrix for array A, while paBepresents
arrays B—E.

array A (Fig. 5A) and arrays B-E (Fig. 5B) show

the same pattern of correlations. The high correlations
found between tissue replicates is an indication of
the validity of the results [24,25]. In addition, the

correlation matrix revealed three groups of closely
related tissues. The first group with high inter-tissue
correlation includes brain and spinal-cord, the second
is heart and muscle and the last includes thymus,
spleen, bone-marrow and lung. This is in agreement
with the expected biological origin of the tissues,
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since they represent the nervous system, muscle, and
immune system respectively.

All expression data, raw as well as normalized,
have been stored in the GeneNote database:(/
genecards.weizmann.ac.il/genenptébeneNote tis-
sue vectors are provided in GeneCaralsy(://bioinfo.
weizmann.ac.il/genecardgor all genes that could
be explicitly assciated via the Affymetrix annotation
(currently~20 000 genes).

The preliminary results presented above provide a
clear indication of the importance of surveying gene
expression in an as broad as possible a gene set.
The combination of comprehensive experimental data
gathering, computer analysis, and database display
provide relevant and useful tools for the transcriptome
community.
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