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Abstract

A novel data set, GeneNote (Gene Normal TissueExpression), was produced to portray complete gene expression pr
in healthy human tissues using the Affymetrix GeneChip HG-U95 set, which includes 62 839 probe-sets. The hybr
intensities of two replicates were processed and analyzed to yield the complete transcriptome for twelve human
Abundant novel information on tissue specificity provides a baseline for past and future expression studies related to
The data is posted in GeneNote (http://genecards.weizmann.ac.il/genenote/), a widely used compendium of human gen
(http://bioinfo.weizmann.ac.il/genecards). To cite this article: O. Shmueli et al., C. R. Biologies 326 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

GeneNote : profils d’expression complets dans des tissus humains normaux.Un nouveau jeu de données, GeneN
(Gene NormalTissueExpression), a été produit pour décrire les profils d’expression complets des gènes dans les tissus
sains, en utilisant les puces GeneChip HG-U95 d’Affymetrix, qui comprennent 62 839 jeux de sondes. Les intensités d
tion de deux réplicats ont été traités et analysés pour décrire le transcriptome complet pour douze tissus humains. Le
nouvelles abondantes sur la spécificité tissulaire fournissent une base de référence pour les études d’expression passé
en relation avec les maladies. Les données sont accessibles dans GeneNote (http://genecards.weizmann.ac.il/genenote/) une
compilaton de gènes humains largement utilisée (http://bioinfo.weizmann.ac.il/genecards). Pour citer cet article : O. Shmueli
et al., C. R. Biologies 326 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The human body orchestrates gene expressio
co-regulating genes whose products function toget
Many challenges are posed due to the vast amou
genomic and expression data that has to be div
into functional biological groups using biological, st
tistical and computational tools. Many past stud
centered on comparisons of diseased to healthy
sues, and were limited to a subset of human genes

High-density oligonucleotide arrays enable high
parallel and comprehensive studies of gene exp
sion. The transcription patterns produced, known
the expression profile, depict the subset of mRNA s
thesized in a certain cell or tissue. At its most fu
damental level, the expression profile describes,
quantitative way, which genes are expressed in a
ticular tissue. More sophisticated issues such as n
gene functional characterization, gene identificat
in biological pathways, genetic variation analysis
identification of drug targets could be surveyed by
ing bioinformatics tools such as cluster analysis ([1
and self organizing-maps [3,4]).

The construction of gene expression databa
is a high priority of today’s research communi
Such databases, closely integrated with other ty
of genomic information, promise not only to enhan
our understanding of many fundamental biologi
processes, but also to accelerate drug discovery
lead to customized diagnosis and treatment of dise
[5,6]. An example generated by our own group
presented the recent releases of GeneCards, w
contain expression data both from array experime
and from ‘electronic Northern’ analyses [7].

As a significant extension of previous releva
efforts, we describe a whole-genome repertoire
expression profiles in twelve normal human tissu
Previously, only studies that compare a single disea
tissue with a healthy one were preformed [8–1
Other surveys that were done on healthy hum
tissues were limited to one array type (i.e. H
U95A [11], Hu6800 [12]). Here, for the first time, w
present the expression analysis of the full complem
of more than 60 000 gene and EST representat
in 12 normal human tissues. It is shown that
additional, less characterized genes harbor impor
information, and that a whole-genome express
analysis is essential for generating comprehen
transcription analyses.

2. Materials and methods

PolyA+ RNA samples from twelve normal hu
man tissues were purchased from Clontech (P
Alto, CA). This collection of major human tissues i
cludes: Bone marrow (catalog number: 6573-1), br
(6516-1), heart (6533-1), kidney (6538-1), liv
(6510-1), lung (6524-1), pancreas (6539-1), pros
(6546-1), skeletal muscle (6541-1), spinal co
(6593-1), spleen (6542-1) and thymus (6536-1).

Preparation and hybridization of cRNA were do
according to the manufacture’s instructions [13]. S
ficient hybridization cocktail solution for five inde
pendent hybridizations reactions (i.e. the full set H
U95A-E) was prepared. The hybridization reactions
all the arrays in the set were carried out simulta
ously. The mRNA from each tissue was reacted in
plicates against the full human Affymetrix arrays s
(HG-U95A-E) to yield two sets of results. The 3′/5′
signal ratios of GAPDH were always below the val
of 3 as expected for a fine labeling reaction.

Arrays were analyzed and expression value w
calculated for each gene by using Microarray S
(MAS) version 5.0 software (Affymetrix, Santa Clar
CA). Expression values for each gene, calledsignal,
were calculated using the MAS 5.0 software with
default parameter settings. Scaling was not done
a MAS 5.0 option. Instead, we normalized our d
as follows: the intensities of each array were log10
transformed and scaled to a constant reference v
(global normalization). This reference value was
mean of all log intensities in all of the tissues. Pres
calls percentages are presented in Fig. 2 for all sam
according to the array type (see also Results
Discussion).

3. Results and discussion

Whole-genome gene expression profiles were g
erated from the normalized signal values. The se
12 tissue expression values for a given gene was
fined as itstissue vector. Normalization was used to a
low a meaningful comparison among different tissu
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Fig. 1. Intensity distribution in the different arrays set in heart sa
ple. Density plots of one heart sample before and after norma
tion are presented. PanelA presents the density plot for log10 raw
signals while panelB presents the normalized signals.

Fig. 1 shows a comparison of the intensities distri
tion of one heart sample for the five different arra
before and after normalization. In this density plot
is observed that the highest intensities are in array
and B, while arrays C, D and E produce considera
lower intensities. These results are similar to the e
lier observations by Bakay et al. [8]. Aspects of t
decreased array intensities are also presented in F
which displays the percentage of ‘present’ calls alo
the samples for each array type. For example, it is w
observed that the percentage of ‘present’ calls in a
D is consistently below 10%. This could be the res
of intrinsic hybridization differences. It could also b
due to the average quality of the probe-sets, since m
of the well-studied genes are found on array A wh
arrays B to E are constructed with increasing prop
sities of less well-characterized ESTs (Expressed
quence Tags).

Tissue specific genes are supposed to have a
nificant role in tissue functionality. Hence, we exa
ined the counts of such genes in the different tis
samples (Fig. 3). One representative sample for e
tissue was chosen, and tissue specific genes wer
termined on the basis of the ‘absent–present’ call
the Affymetrix MAS 5.0 software. A similar criterion
was used in the past for housekeepings genes s
-

-

Fig. 2. Percent of present calls in all samples according to the a
type. ‘Present’ call percentages were taken from the MAS 5.0 re
files and are presented for the various array types in all of
samples. The A–E letters represent the array type. The follow
are the tissue samples shortcuts:BMR for bone marrow,BRN for
brain, HRT for heart,KDN for kidney, LNG for lung, LVR for
liver, MSL for muscle,PNC for pancreas,PST for prostate,SPC
for spinal cord,SPL for spleen, andTMS for thymus. The number
attached to the sample name represent the replicate number.

tion [14]. In this paper, we define tissue specificity
having a ‘present’ call in only one tissue. It is observ
that brain and thymus had the highest number of tis
specific genes, almost twice the number observed
other tissues. The propensity of tissue specific gen
not much lower in arrays B–E when compared to
ray A, suggesting that important information also
sides within the former. However, one should also t
into consideration that the amount of ‘present’ calls
reduced on arrays C–E (Fig. 2). Consequently, the
creased effect of tissue specificity may be an arti
of the array quality and design.

The MAS 5.0 package is one of the most commo
used software tools for analyzing high-density mi
roarray results. However its use of ‘present–abs
calls is a controversial issue in the literature [15–1
To address this, we have begun to develop alterna
methods utilizing a normalized entropy-related Tiss
Specificity Index (TSI), computed directly from th
tissue vectors. This algorithm is currently being eva
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Fig. 3. Tissue specific genes in all of the tissues sorted by the a
set. Tissue specific genes were found based on the ‘absent–pr
call of the Affymetrix MAS 5.0 software. Tissue specificity wa
defined as having a ‘present’ call in only one tissue. One sam
for each tissue was chosen for the search. The tissue specific
distribution on the arrays set, HG-U95A-E is shown for all tissue

ated as compared to other methods (O. Shmueli e
manuscript in preparation).

Criticism has also been directed towards the s
traction of the mismatch probes (MM) from the perfe
match probes (PM) creating PM-MM values as an
derlying computation for assessing background lev
and signal computations. Several methods have b
developed to evaluate the background level of int
sity above which the value truly reflects the gene
pression value [15,16,18–20]. Some of these mo
fit log(PM-Background), instead of PM-MM, thoug
in low-intensity regions the current models are s
very questionable [16]. Consequently, the validity
the zone of low-intensity probes, which is close to
background level, remains undetermined.

The tissue vectors for each gene were drawn o
root scale representation [7] as exemplified in Fig
for the gene APCS (Amyloid P-component, seru
[21]. APCS is a precursor for amyloid componen
which is found in basement membrane and associ
with amyloid deposits. A root scale enables one
visualize several orders of magnitude, similar to
logarithmic scale, but preserves some advantag
the linear scale, i.e. a differential increase with
’

s

Fig. 4. Tissue vector for the gene APCS [21]. Tissue vector
the gene APCS was calculated from the normalized signals
is presented in a graphical way (panelA). Tissues were groupe
according to their origin and the groups colored accordingly (e
nerve tissues in green). The range between the lower and h
measurements was represented by a white box above the co
minimal measurement bar. The graph is presented on they-axis
with a special root scale [7]Y = X(1/B) whereB = log210. Panel
B presents the tissue vector colored map.

different orders of magnitude. This affords an effect
view-at-a-glance of the tissue vectors.

A major aim of this work is to enable prediction
the function of novel genes based on their expres
profiles. It is expected that genes that display sim
expression patterns are functionally related, si
they are co-regulated under all of the developme
conditions [22,23]. On the basis of the express
profile similarities, ten tissues were ordered in a tis
correlation matrix (Fig. 5). It is clearly seen th
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Fig. 5. Tissue correlation matrix. Tissue vectors of the normali
signals (log transformed and scaled) were used to calculate c
lations between twenty tissue samples. The correlations were
culated using the Pearson correlation coefficient and presented
tissue vector correlation matrix. Different correlation levels are p
sented according to the color scale on the right. PanelA presents the
tissue vector correlation matrix for array A, while panelB presents
arrays B–E.

array A (Fig. 5A) and arrays B–E (Fig. 5B) sho
the same pattern of correlations. The high correlati
found between tissue replicates is an indication
the validity of the results [24,25]. In addition, th
correlation matrix revealed three groups of clos
related tissues. The first group with high inter-tiss
correlation includes brain and spinal-cord, the sec
is heart and muscle and the last includes thym
spleen, bone-marrow and lung. This is in agreem
with the expected biological origin of the tissue
since they represent the nervous system, muscle,
immune system respectively.

All expression data, raw as well as normalize
have been stored in the GeneNote database (http://
genecards.weizmann.ac.il/genenote/). GeneNote tis-
sue vectors are provided in GeneCards (http://bioinfo.
weizmann.ac.il/genecards) for all genes that could
be explicitly assciated via the Affymetrix annotatio
(currently∼20 000 genes).

The preliminary results presented above provid
clear indication of the importance of surveying ge
expression in an as broad as possible a gene
The combination of comprehensive experimental d
gathering, computer analysis, and database dis
provide relevant and useful tools for the transcripto
community.
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