215 research outputs found

    Impact of tidal-stream arrays in relation to the natural variability of sedimentary processes

    Get PDF
    AbstractTidal Energy Converter (TEC) arrays are expected to reduce tidal current speeds locally, thus impacting sediment processes, even when positioned above bedrock, as well as having potential impacts to nearby offshore sand banks. Furthermore, the tidal dissipation at potential TEC sites can produce high suspended sediment concentrations (turbidity maxima) which are important for biological productivity. Yet few impact assessments of potential TEC sites have looked closely at sediment dynamics beyond local scouring issues. It is therefore important to understand to what extent exploitation of the tidal energy resource will affect sedimentary processes, and the scale of this impact is here assessed in relation to natural variability. At one such site in the Irish Sea that is highly attractive for the deployment of TEC arrays, we collect measurements of sediment type and bathymetry, apply a high resolution unstructured morphodynamic model, and a spectral wave model in order to quantify natural variability due to tidal and wave conditions. We then simulate the impacts of tidal-stream energy extraction using the morphodynamic model. Our results suggest that the sedimentary impacts of ‘first generation’ TEC arrays (i.e. less than 50 MW), at this site, are within the bounds of natural variability and are, therefore, not considered detrimental to the local environment. Yet we highlight potential environmental issues and demonstrate how impact assessments at other sites could be investigated

    Resource assessment for future generations of tidal-stream energy arrays

    Get PDF
    AbstractTidal-stream energy devices currently require spring tide velocities (SV) in excess of 2.5 m/s and water depths in the range 25–50 m. The tidal-stream energy resource of the Irish Sea, a key strategic region for development, was analysed using a 3D hydrodynamic model assuming existing, and potential future technology. Three computational grid resolutions and two boundary forcing products were used within model configuration, each being extensively validated. A limited resource (annual mean of 4 TJ within a 90 km2 extent) was calculated assuming current turbine technology, with limited scope for long-term sustainability of the industry. Analysis revealed that the resource could increase seven fold if technology were developed to efficiently harvest tidal-streams 20% lower than currently required (SV > 2 m/s) and be deployed in any water depths greater than 25 m. Moreover, there is considerable misalignment between the flood and ebb current directions, which may reduce the practical resource. An average error within the assumption of rectilinear flow was calculated to be 20°, but this error reduced to ∌3° if lower velocity or deeper water sites were included. We found resource estimation is sensitive to hydrodynamic model resolution, and finer spatial resolution (<500 m) is required for regional-scale resource assessment when considering future tidal-stream energy strategies

    Future variability of solute transport in a macrotidal estuary

    Get PDF
    AbstractThe physical controls on salt distribution and river-sourced conservative solutes, including the potential implications of climate change, are investigated referring to model simulations of a macrotidal estuary. In the UK, such estuaries typically react rapidly to rainfall events and, as such, are often in a state of non-equilibrium in terms of solute transport; hence are particularly sensitive to climate extremes. Sea levels are projected to rise over the 21st century, extending the salinity maximum upstream in estuaries, which will also affect downstream solute transport, promoting estuarine trapping and reducing offshore dispersal of material. Predicted ‘drier summers’ and ‘wetter winters’ in the UK will influence solute transport further still; we found that projected river flow climate changes were more influential than sea-level rise, especially for low flow conditions. Our simulations show that projected climate change for the UK is likely to increase variability in estuarine solute transport and, specifically, increase the likelihood of estuarine trapping during summer, mainly due to drier weather conditions. Future changes in solute transport were less certain during winter, since increased river flow will to some extent counter-act the effects of sea-level rise. Our results have important implications for non-conservative nutrient transport, water quality, coastal management and ecosystem resilience

    Predicting the dispersal of SARS-CoV-2 RNA from the wastewater treatment plant to the coast

    Get PDF
    Viral pathogens including SARS-CoV-2 RNA have been detected in wastewater treatment effluent, and untreated sewage overflows, that pose an exposure hazard to humans. We assessed whether SARS-CoV-2 RNA was likely to have been present in detectable quantities in UK rivers and estuaries during the first wave of the Covid-19 pandemic. We simulated realistic viral concentrations parameterised on the Camel and Conwy catchments (UK) and their populations, showing detectable SARS-CoV-2 RNA concentrations for untreated but not for treated loading, but also being contingent on viral decay, hydrology, catchment type/shape, and location. Under mean or low river flow conditions, viral RNA concentrated within the estuaries allowing for viral build-up and caused a lag by up to several weeks between the peak in community infections and the viral peak in the environment. There was an increased hazard posed by SARS-CoV-2 RNA with a T90 decay rate >24 h, as the estuarine build-up effect increased. High discharge events transported the viral RNA downstream and offshore, increasing the exposure risk to coastal bathing waters and shellfisheries – although dilution in this case reduced viral concentrations well below detectable levels. Our results highlight the sensitivity of exposure to viral pathogens downstream of wastewater treatment, across a range of viral loadings and catchment characteristics – with implications to environmental surveillance

    Influence of storm surge on tidal range energy

    Get PDF
    The regular and predictable nature of the tide makes the generation of electricity with a tidal lagoon or barrage an attractive form of renewable energy, yet storm surges affect the total water-level. Here, we present the first assessment of the potential impact of storm surges on tidal-range power. Water-level data (2000–2012) at nine UK tide gauges, where tidal-range energy is suitable for development (e.g. Bristol Channel), was used to predict power. Storm surge affected annual resource estimates −5% to +3%, due to inter-annual variability, which is lower than other sources of uncertainty (e.g. lagoon design); therefore, annual resource estimation from astronomical tides alone appears sufficient. However, instantaneous power output was often significantly affected (Normalised Root Mean Squared Error: 3%–8%, Scatter Index: 15%–41%) and so a storm surge prediction system may be required for any future electricity generation scenario that includes large amounts of tidal-range generation. The storm surge influence to tidal-range power varied with the electricity generation strategy considered (flooding tide only, ebb-only or dual; both flood and ebb), but with some spatial and temporal variability. The flood-only strategy was most affected by storm surge, mostly likely because tide-surge interaction increases the chance of higher water-levels on the flooding tide

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the inclusive isolated prompt photon cross-section in pp collisions at sqrt(s)= 7 TeV using 35 pb-1 of ATLAS data

    Get PDF
    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy sqrt(s) = 7 TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<=|eta|<2.37 in the transverse energy range 45<=E_T<400GeV. The results are based on an integrated luminosity of 35 pb-1, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.Comment: 7 pages plus author list (18 pages total), 2 figures, 4 tables, final version published in Physics Letters
    • 

    corecore