28 research outputs found

    Gaia Early Data Release 3: Structure and properties of the Magellanic Clouds

    Get PDF
    We compare the Gaia DR2 and Gaia EDR3 performances in the study of the Magellanic Clouds and show the clear improvements in precision and accuracy in the new release. We also show that the systematics still present in the data make the determination of the 3D geometry of the LMC a difficult endeavour; this is at the very limit of the usefulness of the Gaia EDR3 astrometry, but it may become feasible with the use of additional external data. We derive radial and tangential velocity maps and global profiles for the LMC for the several subsamples we defined. To our knowledge, this is the first time that the two planar components of the ordered and random motions are derived for multiple stellar evolutionary phases in a galactic disc outside the Milky Way, showing the differences between younger and older phases. We also analyse the spatial structure and motions in the central region, the bar, and the disc, providing new insights into features and kinematics. Finally, we show that the Gaia EDR3 data allows clearly resolving the Magellanic Bridge, and we trace the density and velocity flow of the stars from the SMC towards the LMC not only globally, but also separately for young and evolved populations. This allows us to confirm an evolved population in the Bridge that is slightly shift from the younger population. Additionally, we were able to study the outskirts of both Magellanic Clouds, in which we detected some well-known features and indications of new ones

    The Gaia mission

    Get PDF
    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. http://www.cosmos.esa.int/gai

    Shift work or food intake during the rest phase promotes metabolic disruption and desynchrony of liver genes in male rats.

    Get PDF
    In the liver, clock genes are proposed to drive metabolic rhythms. These gene rhythms are driven by the suprachiasmatic nucleus (SCN) mainly by food intake and via autonomic and hormonal pathways. Forced activity during the normal rest phase, induces also food intake, thus neglecting the signals of the SCN, leading to conflicting time signals to target tissues of the SCN. The present study explored in a rodent model of night-work the influence of food during the normal sleep period on the synchrony of gene expression between clock genes and metabolic genes in the liver. Male Wistar rats were exposed to forced activity for 8 h either during the rest phase (day) or during the active phase (night) by using a slow rotating wheel. In this shift work model food intake shifts spontaneously to the forced activity period, therefore the influence of food alone without induced activity was tested in other groups of animals that were fed ad libitum, or fed during their rest or active phase. Rats forced to be active and/or eating during their rest phase, inverted their daily peak of Per1, Bmal1 and Clock and lost the rhythm of Per2 in the liver, moreover NAMPT and metabolic genes such as Pparα lost their rhythm and thus their synchrony with clock genes. We conclude that shift work or food intake in the rest phase leads to desynchronization within the liver, characterized by misaligned temporal patterns of clock genes and metabolic genes. This may be the cause of the development of the metabolic syndrome and obesity in individuals engaged in shift work

    When rats are active and eat during the rest phase metabolic genes are down regulated.

    No full text
    <p>Relative expression levels of Sirt1 mRNA and SIRT1 protein in liver of CTRL, ARP, FRP, AAP and FAP rats are presented during the 24-h LD cycle. Each value represents the mean ± SEM (n = 3–4 per time point). Other indications as in Fig. 5.</p

    When rats are active and eat during the rest phase microvesicular steatosis were observed.

    No full text
    <p>Oil-Red-O staining of frozen sections of livers obtained from CTRL, ARP and AAP rats. Mayer’s hematoxylin was used for counterstaining. In ARP rats were observed typical lipid microdroplets that are indicative of microvesicular steatosis. In L is shown the mean of the area of the red oil positive tissues,; (<i>P<</i>0.0001).</p

    Except for Per2 in ARP and FRP, clock genes in the liver follow food and activity.

    No full text
    <p>Relative mRNA temporal profiles of clock genes along the light/dark (LD) cycle were examined in the liver of control. (n = 3 rats per time point). A) Black and white bars at the bottom of the figure represent the LD cycle; the striped bars represent the time spent in the slow rotating wheel for the ARP an AAP rats respectively. B) The striped bar indicates the light period in which FRP animals received their food. Quantification of genes was normalized to Actin. Daily curves for clock and metabolic genes were tested with a cosinor analysis to determine significance in amplitude and to determine the acrophase. See also <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0060052#pone-0060052-t002" target="_blank">table 2</a> for details. Asterisk indicates a significant rhythm in the CTRL group, † indicates a significant rhythm in the ARP group, # indicates a significant rhythm in the FRP group,+indicates a significant rhythm in the AAP group and ‡ indicates significant rhythm in the FAP group. These results were corroborated with Kruskall-Wallis test (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0060052#pone-0060052-t003" target="_blank">Table 3</a>).</p

    Changes in metabolic parameters after 4 weeks activity in the rest phase.

    No full text
    <p>Mean (±SEM) body weight gain (A,C), and abdominal fat weight (B,D) of control (n = 8) and rats exposed to forced activity during their rest phase (ARP) or during their activity phase (AAP) (n = 6 per group) and rats with restricted food during the rest phase (FRP) or during their activity phase (FAP) (n = 9 per group). All groups showed a similar daily pattern of food consumption); however, ARP and FRP rats increased their body weight (A,C) and attained a higher accumulation of abdominal fat (B,C) while AAP rats remained at similar values as controls. (P<0.001). Statistical analyses were performed with a Tukey multiple comparisons post hoc test.</p
    corecore