174 research outputs found

    Effect of plyometric training on swimming block start performance in adolescents

    Get PDF
    This study aimed to identify the effect of plyometric training (PT), when added to habitual training (HT) regimes, on swim start performance. After the completion of a baseline competitive swim start, 22 adolescent swimmers were randomly assigned to either a PT (n = 11, age: 13.1 ± 1.4 yr, mass: 50.6 ± 12.3 kg, stature: 162.9 ± 11.9 cm) or an HT group (n = 11, age: 12.6 ± 1.9 yr, mass: 43.3 ± 11.6 kg, stature: 157.6 ± 11.9 cm). Over an 8-week preseason period, the HT group continued with their normal training program, whereas the PT group added 2 additional 1-hour plyometric-specific sessions, incorporating prescribed exercises relating to the swimming block start (SBS). After completion of the training intervention, post-training swim start performance was reassessed. For both baseline and post-trials, swim performance was recorded using videography (50Hz Canon MVX460) in the sagital plane of motion. Through the use of Silicon Coach Pro analysis package, data revealed significantly greater change between baseline and post-trials for PT when compared with the HT group for swim performance time to 5.5 m (−0.59 s vs. −0.21 s; p < 0.01) and velocity of take-off to contact (0.19 ms−1 vs. −0.07 ms−1; p < 0.01). Considering the practical importance of a successful swim start to overall performance outcome, the current study has found that inclusion of suitable and safely implemented PT to adolescent performers, in addition to HT routines, can have a positive impact on swim start performance

    Redescription of Serpinema octorugatum (Baylis, 1933) (Nematoda:Camallanidae) from the Malayan box turtle Cuora amboinensis (Daudin)(Chelonia: Bataguridae)

    Get PDF
    We redescribe the camallanid nematode Serpinema octorugatum (Baylis, 1933) from the box turtle Cuora amboinensis (Daudin) collected in Malaysia. In this redescription, we amend the original description by noting that there are only four cephalic papillae and that there are five pairs of post-anal papillae, and propose that the name of this species be corrected from S. octorugatus to S. octorugatum. Additionally, we removed the tissues overlying the buccal capsule and have used SEM studies to show that the peribuccal shields extend laterally from the buccal capsule, forming a surface possibly used in muscle attachment. Furthermore, we show that the supposedly noncuticularised cylinder connecting the buccal capsule to the oesophagus in the Camallanidae is part of the buccal capsule and is, therefore, likely to be cuticularised. We also examine morphological measurements of taxonomic interest for correlations with total body length and find that many characters traditionally used for inter-and intraspecific comparisons are correlated with total body length in adult female worms. This suggests that comparisons between samples of adult female worms that do not account for the potential effect of total body length may be misleading. However, we show that some features of taxonomic interest are not correlated with total body length

    Micronutrient and amino acid losses during renal replacement therapy for acute kidney injury

    Get PDF
    © 2019 International Society of Nephrology Introduction: Malnutrition is common in patients with acute kidney injury (AKI), particularly in those requiring renal replacement therapy (RRT). Use of RRT removes metabolic waste products and toxins, but it will inevitably also remove useful molecules such as micronutrients, which might aggravate malnutrition. The RRT modalities vary in mechanism of solute removal; for example, intermittent hemodialysis (IHD) uses diffusion, continuous veno-venous hemofiltration (CVVH) uses convection, and sustained low-efficiency diafiltration (SLEDf) uses a combination of these. Methods: We assessed micronutrient and amino acid losses in 3 different RRT modalities in patients with AKI (IHD, n = 27; SLEDf, n = 12; CVVH, n = 21) after correction for dialysis dose and plasma concentrations. Results: Total losses were affected by modality; generally CVVH >> SLEDf > IHD (e.g., amino acid loss was 18.69 ± 3.04, 8.21 ± 4.07, and 5.13 ± 3.1 g, respectively; P < 0.001). Loss of specific trace elements (e.g., copper and zinc) during RRT was marked, with considerable heterogeneity between RRT types (e.g., +849 and +2325 μg/l lost during SLEDf vs. IHD, respectively), whereas effluent losses of copper and zinc decreased during CVVH (effect size relative to IHD, −3167 and −1442 μg/l, respectively). B vitamins were undetectable in effluent, but experimental modeling estimated 40% to 60% loss within the first 15 minutes of RRT. Conclusion: Micronutrient and amino acid losses are marked during RRT in patients with AKI, with variation between RRT modalities and micronutrients

    Effect Threshold for Selenium Toxicity in Juvenile Splittail, Pogonichthys macrolepidotus A

    Get PDF
    In fish, selenium can bioaccumulate and cause adverse impacts. One of the fish species potentially at risk from selenium in the San Francisco Bay (California, USA) is the splittail (Pogonichthys macrolepidotus). Previous studies have derived a whole body NOAEL and LOAEL of 9.0 and 12.9 mg/kg-dw, respectively, for selenium in juveniles. However, the NOAEL/LOAEL approach leaves some uncertainty regarding the threshold of toxicity. Therefore, the raw data from the original experiment was re-analyzed using a logistic regression to derive EC10 values of 0.9 mg/kg-dw in feed, 7.9 mg/kg-dw in muscle, 18.6 mg/kg-dw in liver for juvenile splittail. Selenium concentrations in the dietary items of wild splittail exceed the EC10 values derived here. Thus, deformities previously reported in wild splittail may have resulted from selenium exposures via the food chain

    Quantifying the UK's carbon dioxide flux: An atmospheric inverse modelling approach using a regional measurement network

    Get PDF
    We present a method to derive atmosphericobservation-based estimates of carbon dioxide (CO 2 ) fluxes at the national scale, demonstrated using data from a network of surface tall-tower sites across the UK and Ireland over the period 2013-2014. The inversion is carried out using simulations from a Lagrangian chemical transport model and an innovative hierarchical Bayesian Markov chain Monte Carlo (MCMC) framework, which addresses some of the traditional problems faced by inverse modelling studies, such as subjectivity in the specification of model and prior uncertainties. Biospheric fluxes related to gross primary productivity and terrestrial ecosystem respiration are solved separately in the inversion and then combined a posteriori to determine net ecosystem exchange of CO 2 . Two different models, Data Assimilation Linked Ecosystem Carbon (DALEC) and Joint UK Land Environment Simulator (JULES), provide prior estimates for these fluxes. We carry out separate inversions to assess the impact of these different priors on the posterior flux estimates and evaluate the differences between the prior and posterior estimates in terms of missing model components. The Numerical Atmospheric dispersion Modelling Environment (NAME) is used to relate fluxes to the measurements taken across the regional network. Posterior CO2 estimates from the two inversions agree within estimated uncertainties, despite large differences in the prior fluxes from the different models. With our method, averaging results from 2013 and 2014, we find a total annual net biospheric flux for the UK of 8±79 TgCO 2 yr -1 (DALEC prior) and 64±85 TgCO 2 yr -1 (JULES prior), where negative values represent an uptake of CO 2 . These biospheric CO 2 estimates show that annual UK biospheric sources and sinks are roughly in balance. These annual mean estimates consistently indicate a greater net release of CO 2 than the prior estimates, which show much more pronounced uptake in summer months

    How dark the sky: the JWST backgrounds

    Full text link
    We describe the sources of stray light and thermal background that affect JWST observations; report actual backgrounds as measured from commissioning and early science observations; compare those background levels to pre-launch predictions; estimate the impact of the backgrounds on science performance; and explore how the backgrounds probe the achieved configuration of the deployed observatory. We find the observatory is limited by the irreducible astrophysical backgrounds, rather than scattered stray light and thermal self-emission, for all wavelengths λ<12.5\lambda < 12.5 micron, thus meeting the level 1 requirement. This result was not assured given the open architecture and thermal challenges of JWST, and is the result of meticulous attention to stray light and thermal issues in the design, construction, integration, and test phases. From background considerations alone, JWST will require less integration time in the near-infrared compared to a system that just met the stray light requirements; as such, JWST will be even more powerful than expected for deep imaging at 1--5 micron. In the mid-infrared, the measured thermal backgrounds closely match pre-launch predictions. The background near 10 micron is slightly higher than predicted before launch, but the impact on observations is mitigated by the excellent throughput of MIRI, such that instrument sensitivity will be as good as expected pre-launch. These measured background levels are fully compatible with JWST's science goals and the Cycle 1 science program currently underway.Comment: Submitted to the "JWST Overview" special issue of PAS

    Precise Black Hole Masses From Megamaser Disks: Black Hole-Bulge Relations at Low Mass

    Full text link
    The black hole (BH)-bulge correlations have greatly influenced the last decade of effort to understand galaxy evolution. Current knowledge of these correlations is limited predominantly to high BH masses (M_BH> 10^8 M_sun) that can be measured using direct stellar, gas, and maser kinematics. These objects, however, do not represent the demographics of more typical L< L* galaxies. This study transcends prior limitations to probe BHs that are an order of magnitude lower in mass, using BH mass measurements derived from the dynamics of H_2O megamasers in circumnuclear disks. The masers trace the Keplerian rotation of circumnuclear molecular disks starting at radii of a few tenths of a pc from the central BH. Modeling of the rotation curves, presented by Kuo et al. (2010), yields BH masses with exquisite precision. We present stellar velocity dispersion measurements for a sample of nine megamaser disk galaxies based on long-slit observations using the B&C spectrograph on the Dupont telescope and the DIS spectrograph on the 3.5m telescope at Apache Point. We also perform bulge-to-disk decomposition of a subset of five of these galaxies with SDSS imaging. The maser galaxies as a group fall below the M_BH-sigma* relation defined by elliptical galaxies. We show, now with very precise BH mass measurements, that the low-scatter power-law relation between M_BH and sigma* seen in elliptical galaxies is not universal. The elliptical galaxy M_BH-sigma* relation cannot be used to derive the BH mass function at low mass or the zeropoint for active BH masses. The processes (perhaps BH self-regulation or minor merging) that operate at higher mass have not effectively established an M_BH-sigma* relation in this low-mass regime.Comment: 21 pages, 14 figures, accepted for publication in the Astrophysical Journa

    A Physical Model for z~2 Dust Obscured Galaxies

    Get PDF
    We present a physical model for the origin of z~2 Dust-Obscured Galaxies (DOGs), a class of high-redshift ULIRGs selected at 24 micron which are particularly optically faint (24/R>1000). By combining N-body/SPH simulations of high redshift galaxy evolution with 3D polychromatic dust radiative transfer models, we find that luminous DOGs (with F24 > 0.3 mJy at z~2 are well-modeled as extreme gas-rich mergers in massive (~5x10^12-10^13 Msun) halos, with elevated star formation rates (~500-1000 Msun/yr) and/or significant AGN growth (Mdot > 0.5 Msun/yr), whereas less luminous DOGs are more diverse in nature. At final coalescence, merger-driven DOGs transition from being starburst dominated to AGN dominated, evolving from a "bump" to a power-law shaped mid-IR (IRAC) spectral energy distribution (SED). After the DOG phase, the galaxy settles back to exhibiting a "bump" SED with bluer colors and lower star formation rates. While canonically power-law galaxies are associated with being AGN-dominated, we find that the power-law mid-IR SED can owe both to direct AGN contribution, as well as to a heavily dust obscured stellar bump at times that the galaxy is starburst dominated. Thus power-law galaxies can be either starburst or AGN dominated. Less luminous DOGs can be well-represented either by mergers, or by massive ($M_{\rm baryon} ~5x10^11 Msun) secularly evolving gas-rich disc galaxies (with SFR > 50 Msun/yr). By utilising similar models as those employed in the SMG formation study of Narayanan et al. (2010), we investigate the connection between DOGs and SMGs. We find that the most heavily star-forming merger driven DOGs can be selected as Submillimetre Galaxies (SMGs), while both merger-driven and secularly evolving DOGs typically satisfy the BzK selection criteria.Comment: Accepted by MNRAS; major changes include better description of dependency on ISM specification and updated models allowing dust to evolve with metallicity
    corecore