2,731 research outputs found

    A Two-dimensional Superconductor in a Tilted Magnetic Field - new states with finite Cooper-pair momentum

    Full text link
    Varying the angle Theta between applied field and the conducting planes of a layered superconductor in a small interval close to the plane-parallel field direction, a large number of superconducting states with unusual properties may be produced. For these states, the pair breaking effect of the magnetic field affects both the orbital and the spin degree of freedom. This leads to pair wave functions with finite momentum, which are labeled by Landau quantum numbers 0<n<\infty. The stable order parameter structure and magnetic field distribution for these states is found by minimizing the quasiclassical free energy near H_{c2} including nonlinear terms. One finds states with coexisting line-like and point-like order parameter zeros and states with coexisting vortices and antivortices. The magnetic response may be diamagnetic or paramagnetic depending on the position within the unit cell. The structure of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states at Theta=0 is reconsidered. The transition n->\infty of the paramagnetic vortex states to the FFLO-limit is analyzed and the physical reason for the occupation of higher Landau levels is pointed out.Comment: 24 pages, 11 figure

    Hierarchies and Ranks for Persistence Pairs

    Full text link
    We develop a novel hierarchy for zero-dimensional persistence pairs, i.e., connected components, which is capable of capturing more fine-grained spatial relations between persistence pairs. Our work is motivated by a lack of spatial relationships between features in persistence diagrams, leading to a limited expressive power. We build upon a recently-introduced hierarchy of pairs in persistence diagrams that augments the pairing stored in persistence diagrams with information about which components merge. Our proposed hierarchy captures differences in branching structure. Moreover, we show how to use our hierarchy to measure the spatial stability of a pairing and we define a rank function for persistence pairs and demonstrate different applications.Comment: Topology-based Methods in Visualization 201

    Analytical Formulation of the Local Density of States around a Vortex Core in Unconventional Superconductors

    Full text link
    On the basis of the quasiclassical theory of superconductivity, we obtain a formula for the local density of states (LDOS) around a vortex core of superconductors with anisotropic pair-potential and Fermi surface in arbitrary directions of magnetic fields. Earlier results on the LDOS of d-wave superconductors and NbSe2_2 are naturally interpreted within our theory geometrically; the region with high intensity of the LDOS observed in numerical calculations turns out to the enveloping curve of the trajectory of Andreev bound states. We discuss experimental results on YNi2_2B2_2C within the quasiclassical theory of superconductivity.Comment: 13 pages, 16 figure

    Fermi Liquid Damping and NMR Relaxation in Superconductors

    Full text link
    Electron collisions for a two dimensional Fermi liquid (FL) are shown to give a quasiparticle damping with interesting frequency and temperature variations in the BCS superconducting state. The spin susceptibility which determines the structure of the damping is analyzed in the normal state for a Hubbard model with a constant on--site Coulomb repulsion. This is then generalized to the superconducting state by including coherence factors and self energy and vertex corrections. Calculations of the NMR relaxation rate reveal that the FL damping structure can reduce the Hebel--Slichter peak, in agreement with data on the organic superconductor (MDT-TTF)2_2AuI2_2. However, the strongly suppressed FL damping in the superconducting state does not eliminate the Hebel-Slichter peak, and thus suggests that other mechanisms are needed to explain the NMR data on (TMTSF)2_2ClO4_4, the BEDT organic compounds, and cuprate superconductors. Predictions of the temperature variation of the damping and the spin response are given over a wide frequency range as a guide to experimental probes of the symmetry of the superconducting pairs.Comment: 10 pages, RevTeX 3.0, 9 figures in uuencoded postscrip

    Anisotropy of the upper critical field in superconductors with anisotropic gaps. Anisotropy parameters of MgB2

    Full text link
    The upper critical field Hc2 is evaluated for weakly-coupled two-band superconductors. By modeling the actual bands and the gap distribution of MgB2 by two Fermi surface spheroids with average parameters of the real material, we show that H_{c2,ab}/H_{c2,c} increases with decreasing temperature in agreement with available data.Comment: 4 pages, 2 figure

    Topological Machine Learning with Persistence Indicator Functions

    Full text link
    Techniques from computational topology, in particular persistent homology, are becoming increasingly relevant for data analysis. Their stable metrics permit the use of many distance-based data analysis methods, such as multidimensional scaling, while providing a firm theoretical ground. Many modern machine learning algorithms, however, are based on kernels. This paper presents persistence indicator functions (PIFs), which summarize persistence diagrams, i.e., feature descriptors in topological data analysis. PIFs can be calculated and compared in linear time and have many beneficial properties, such as the availability of a kernel-based similarity measure. We demonstrate their usage in common data analysis scenarios, such as confidence set estimation and classification of complex structured data.Comment: Topology-based Methods in Visualization 201

    Metals in high magnetic field: a new universality class of Fermi liquids

    Full text link
    Parquet equations, describing the competition between superconducting and density-wave instabilities, are solved for a three-dimensional isotropic metal in a high magnetic field when only the lowest Landau level is filled. In the case of a repulsive interaction between electrons, a phase transition to the density-wave state is found at finite temperature. In the opposite case of attractive interaction, no phase transition is found. With decreasing temperature TT, the effective vertex of interaction between electrons renormalizes toward a one-dimensional limit in a self-similar way with the characteristic length (transverse to the magnetic field) decreasing as ln1/6(ωc/T)\ln^{-1/6}(\omega_c/T) (ωc\omega_c is a cutoff). Correlation functions have new forms, previously unknown for conventional one-dimensional or three-dimensional Fermi-liquids.Comment: 13 pages + 4 figures (included

    Persistent Intersection Homology for the Analysis of Discrete Data

    Full text link
    Topological data analysis is becoming increasingly relevant to support the analysis of unstructured data sets. A common assumption in data analysis is that the data set is a sample---not necessarily a uniform one---of some high-dimensional manifold. In such cases, persistent homology can be successfully employed to extract features, remove noise, and compare data sets. The underlying problems in some application domains, however, turn out to represent multiple manifolds with different dimensions. Algebraic topology typically analyzes such problems using intersection homology, an extension of homology that is capable of handling configurations with singularities. In this paper, we describe how the persistent variant of intersection homology can be used to assist data analysis in visualization. We point out potential pitfalls in approximating data sets with singularities and give strategies for resolving them.Comment: Topology-based Methods in Visualization 201

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30
    corecore