25 research outputs found

    ENDOTOXAEMIA, PULMONARY COMPLICATIONS, AND THROMBOCYTOPENIA IN LIVER TRANSPLANTATION

    Get PDF
    Plasma endotoxin was measured in 64 patients undergoing primary liver replacement. Endotoxin concentrations increased during the anhepatic phase of the operations, and remained high for several days. Although the severity of endotoxaemia did not correlate with duration of the anhepatic phase, there was a correlation between endotoxaemia and the need for perioperative platelet transfusions, ventilator dependency postoperatively, and one-month case-fatality

    Liver transplantation for type IV glycogen storage disease

    Get PDF
    TYPE IV glycogen storage disease is a rare autosomal recessive disorder (also called Andersen's disease1 or amylopectinosis) in which the activity of branching enzyme alpha-1, 4-glucan: alpha-1, 4-glucan 6-glucosyltransferase is deficient in the liver as well as in cultured skin fibroblasts and other tissues.2,3 This branching enzyme is responsible for creating branch points in the normal glycogen molecule. In the relative or absolute absence of this enzyme, an insoluble and irritating form of glycogen, an amylopectin-like polysaccharide that resembles plant starch, accumulates in the cells. The amylopectin-like form is less soluble than normal glycogen, with longer outer and inner chains. © 1991, Massachusetts Medical Society. All rights reserved

    Intestinal transplantation in children under FK 506 immunosuppression

    Get PDF
    Intestinal transplantation, solitary (n = 3) or in combination with the liver (n = 7), was performed in 10 pediatric patients with intestinal failure. The liver was only replaced if there was liver failure and portal hypertension. Immunosuppression was based on FK 506. Two patients died, one of graft-versus-host disease and one of lymphoproliferative disease. One patient was still in the intensive care unit 1 month posttransplantation due to perioperative complications. The function of the intestinal grafts in the remaining patients is normal. All nutrition and medications including immunosuppression are being administered enterally. This series indicates that small bowel transplantation, alone or in combination with the liver, is feasible in pediatric patients. © 1993

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Rapid development of a Clinical Decision-Making Committee in a UK paediatric hospital during the COVID-19 pandemic

    No full text
    To date, the Government has not issued any national ethical guidance to support clinical decision-making in England during periods of potentially reduced healthcare resources in the context of the evolving COVID-19 1 pandemic at the time of writing. In the ensuing vacuum left by a lack of national guidance, ethical frameworks and approaches have been drafted by professional bodies, individual hospitals and trusts. It is clear that in delivering healthcare during this pandemic, more specific guidance is needed to ensure fair and consistent allocation policies, to attain public trust and confidence and to support clinicians so that decisions do not fall on them to make alone and unsupported. This article sets out how we in our institution, a UK tertiary and secondary level stand-alone paediatric provider Trust, set up a Clinical Decision-Making Committee to inform proactive clinical and ethical decision-making, to ensure that all patients are treated appropriately and fairly during these unprecedented times. </jats:p
    corecore