54 research outputs found

    Association of Oscillatory Ventilation during Cardiopulmonary Test to Clinical and Functional Variables of Chronic Heart Failure Patients

    Get PDF
    Objective: The aim of this study is to characterize the presence of exercise oscillatory ventilation (EOV) and to relate it with other cardiopulmonary exercise test (CET) responses and clinical variables. Methods: Forty-six male patients (age: 53.1 +/- 13.6 years oldleft ventricular ejection fraction [LVEF]: 30 +/- 8%) with heart failure were recruited to perform a maximal CET and to correlate the CET responses with clinical variables. The EOV was obtained according to Leite et al. criteria and VE/VCO2 > 34 and peak VO2 34 and peak VO2 34 to patients who just had one of these responses either. Conclusion: The present study showed that there was an incidence of patients with EOV and lower peak VO2 and higher VE/VCO2 slope values, but they showed no difference on other prognostic variables. As well, there was no influence of the presence of EOV on other parameters of CET in this population, suggesting that this variable may be an independent marker of worst prognosis in HF patients.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)Univ Fed Rio de Janeiro, Fac Med, Res Grp Cardioresp Rehabil GECARE, Rio de Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Fac Med, Dept Phys Therapy, Rio de Janeiro, RJ, BrazilUniv Fed Sao Paulo UNIFESP, EPM, Dept Med, Resp Div,Pulm Funct & Clin Exercise Physiol Unit, Sao Paulo, SP, BrazilUniv Fed Sao Paulo UNIFESP, Dept Physiotherapy, Resp Div, Sao Paulo, BrazilUniv Fed Sao Carlos UFSCAR, Dept Phys Therapy, Lab Cardiopulm Phys Therapy LACAP, Sao Carlos, SP, BrazilUniv Fed Sao Paulo UNIFESP, EPM, Dept Med, Resp Div,Pulm Funct & Clin Exercise Physiol Unit, Sao Paulo, SP, BrazilUniv Fed Sao Paulo UNIFESP, Dept Physiotherapy, Resp Div, Sao Paulo, BrazilWeb of Scienc

    Cardiorespiratory adjustments during the accentuation of respiratory sinus arrhythmia: influence from time of maneuver on minute volume, fraction of expired CO 2 , and heart rate variability

    Get PDF
    La frecuencia cardíaca sufre oscilaciones durante el ciclo respiratorio, fenómeno conocido como arritmia sinusal respiratoria. La maniobra para acentuación de la arritmia sinusal respiratoria (M-ASR) consiste en mantener ventilación educada con frecuencia respiratoria de seis ciclos por minuto con relación al tiempo inspiración/espiración (TI:TE) de 1:1. En este estudio se propone a evaluar la conducta del volumen minuto, de la fracción espirada de CO2 (FeCO2 infiere sobre el PaCO2) y el control autonómico de la frecuencia cardíaca durante la M-ASR con duración mayor de 90s. Se evaluaron 16 varones jóvenes sanos (de 18 a 25 años de edad). Se les orientaron para que realizasen inspiraciones y espiraciones pausadas de 10 segundos de duración por ciclo, TI:TE de 1:1, y consecuente frecuencia respiratoria de seis incursiones por minuto, durante cuatro minutos. Durante la evaluación se recolectaron la frecuencia cardíaca (FC), latido a latido a través de un monitor de frecuencia cardíaca, el volumen minuto (VM) y la FeCO2 mediante un ergoespirómetro. Para el análisis estadístico se empleó ANOVA one-way (con post-hoc de Tukey) o test de Kruskal-Wallis (con post-hoc de Dunn) cuando necesario (pHeart rate (HR) fluctuate during the respiratory cycle. This phenomenon is known as respiratory sinus arrhythmia. The deep breathing test is to keep a paced breathing in six breathing per minute and I:E relationship 1:1. The purpose of this study is to access minute volume, expired fraction of carbon dioxide (EFCO2) and autonomic control of heart rate during deep breathing test longer than 90 seconds. Sixteen young healthy male (18 - 25 years old) were assessed. The subjects were instructed to perform inspirations and expirations with duration of 10 seconds per cycle, I:E = 1:1, and consequently respiratory rate of 6 cycles per minute, for about four minutes with one minute after and before, totaling six minutes. HR was recorded beat-to-beat using a cardio frequencimeter; MV and EFCO2 was measured and recorded using a mobile ergoespirometer. To analyse statistics differences, ANOVA one way (Tuckey post-hoc) and Kruskall Wallis (Dunn post-hoc) were used (pA frequência cardíaca sofre variações durante o ciclo respiratório, fenômeno conhecido como arritmia sinusal respiratória. A manobra para acentuação da arritmia sinusal respiratória (M-ASR) consiste em manter ventilação educada com uma frequência respiratória de seis ciclos por minuto com relação tempo inspiração/expiração (TI:TE) de 1:1. Este estudo tem como objetivo avaliar o comportamento do volume minuto, da fração expirada de CO2 (FeCO2 infere sobre PaCO2) e do controle autonômico da frequência cardíaca durante a M-ASR com duração maior do que 90s. Foram avaliados 16 homens jovens saudáveis (de 18 a 25 anos). Todos foram orientados a realizar inspirações e expirações lentas com duração de 10 segundos por ciclo, TI:TE de 1:1 e consequente frequência respiratória de seis incursões por minuto, durante quatro minutos. Durante a avaliação foi coletada a frequência cardíaca (FC) batimento a batimento por meio de um cardiofrequencímetro, o volume minuto (VM) e a FeCO2 através de um ergoespirômetro. Para análise estatística empregou-se ANOVA one-way (com post-hoc de Tukey) ou teste de Kruskal-Wallis (com post-hoc de Dunn) quando conveniente (

    Local hydrological conditions influence tree diversity and composition across the Amazon basin

    Get PDF
    Tree diversity and composition in Amazonia are known to be strongly determined by the water supplied by precipitation. Nevertheless, within the same climatic regime, water availability is modulated by local topography and soil characteristics (hereafter referred to as local hydrological conditions), varying from saturated and poorly drained to well-drained and potentially dry areas. While these conditions may be expected to influence species distribution, the impacts of local hydrological conditions on tree diversity and composition remain poorly understood at the whole Amazon basin scale. Using a dataset of 443 1-ha non-flooded forest plots distributed across the basin, we investigate how local hydrological conditions influence 1) tree alpha diversity, 2) the community-weighted wood density mean (CWM-wd) – a proxy for hydraulic resistance and 3) tree species composition. We find that the effect of local hydrological conditions on tree diversity depends on climate, being more evident in wetter forests, where diversity increases towards locations with well-drained soils. CWM-wd increased towards better drained soils in Southern and Western Amazonia. Tree species composition changed along local soil hydrological gradients in Central-Eastern, Western and Southern Amazonia, and those changes were correlated with changes in the mean wood density of plots. Our results suggest that local hydrological gradients filter species, influencing the diversity and composition of Amazonian forests. Overall, this study shows that the effect of local hydrological conditions is pervasive, extending over wide Amazonian regions, and reinforces the importance of accounting for local topography and hydrology to better understand the likely response and resilience of forests to increased frequency of extreme climate events and rising temperatures

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology

    Get PDF
    In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics

    Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology

    Get PDF
    In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics
    corecore