1,054 research outputs found
Multi-spectral vascular oximetry of rat dorsal spinal cord
We describe a visible-light multi-spectral system for vascular oximetry studies that can be implemented in lowand middle-income countries, using a low-cost electronics and optical elements, for instance a Raspberry Pi, a Pi camera under a resolution of 5-megapixel, 2592x1944-pixel resolution, and four different light sources at 480nm, 532nm, 593nm and 610nm on a singular structured illumination area. It is designed to quantify the vascular oxygen saturation change of the rat dorsal spinal cord, which uses a Phyton custom application that synchronize all elements to execute the imaging process in one system, powered by a portable rechargeable 5V battery pack. Aimed for drug discovery, tracking disease progression and understanding of progressive and degenerative diseases. By replacing expensive and bulky imaging systems
Accurate strain measurements in highly strained Ge microbridges
Ge under high strain is predicted to become a direct bandgap semiconductor.
Very large deformations can be introduced using microbridge devices. However,
at the microscale, strain values are commonly deduced from Raman spectroscopy
using empirical linear models only established up to 1.2% for uniaxial stress.
In this work, we calibrate the Raman-strain relation at higher strain using
synchrotron based microdiffraction. The Ge microbridges show unprecedented high
tensile strain up to 4.9 % corresponding to an unexpected 9.9 cm-1 Raman shift.
We demonstrate experimentally and theoretically that the Raman strain relation
is not linear and we provide a more accurate expression.Comment: 10 pages, 4 figure
Spontaneous emission control of colloidal nanocrystals using nanoimprinted photonic crystals
The authors report on the fabrication and optical characterizations of two-dimensional photonic crystals fabricated by nanoimprint lithography in a nanocomposite polymer incorporating highly luminescent and red emitting (CdSe)ZnS core-shell colloidal nanocrystals. Photonic crystal structures enhance the light emitted from the quantum sized nanoparticles in the composite layer by slowing the propagation speed of the photons, thus increasing the coupling to the out-of-plane radiative modes. A 200% enhancement of the light collection is achieved compared to an unpatterned sample. (c) 2007 American Institute of Physics. (DOI:10.1063/1.2430625
3-Bromophenyl 6-acetoxymethyl-2-oxo-2H-1-benzopyran-3-carboxylate inhibits cancer cell invasion in vitro and tumour growth in vivo
In search for new anticancer agents, we have evaluated the antiinvasive and antimigrative properties of recently developed synthetic coumarin derivatives among which two compounds revealed important activity: 3-chlorophenyl 6-acetoxymethyl-2-oxo-2H-1-benzopyran-3-carboxylate and 3-bromophenyl 6-acetoxymethyl-2-oxo-2H-1-benzopyran-3-carboxylate, Both drugs were able to inhibit cell invasion markedly in a Boyden chamber assay, the bromo derivative being more potent than the reference matrix metalloprotease (MMP) inhibitor GI 129471. In vivo, tumour growth was reduced when nude mice grafted with HT 1080 or MDA-MB231 cells were treated i.p. 3 days week(-1) with the bromo coumarin derivative. These effects were not associated with the inhibition of urokinase, plasmin, MMP-2 or MMP-9. The mechanism of action of the drugs remains to be elucidated. However, these two coumarin derivatives may serve as new lead compounds of an original class of antitumour agents
Observation of an Excited Bc+ State
Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date
Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at √s=7 TeV
Bose-Einstein correlations of same-sign charged pions, produced in protonproton collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected
by the LHCb experiment. The signature for Bose-Einstein correlations is observed in the
form of an enhancement of pairs of like-sign charged pions with small four-momentum
difference squared. The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source
is investigated, determining both the correlation radius and the chaoticity parameter. The
measured correlation radius is found to increase as a function of increasing charged-particle
multiplicity, while the chaoticity parameter is seen to decreas
Measurement of the inelastic pp cross-section at a centre-of-mass energy of 13TeV
The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum p > 2 GeV/c in the pseudorapidity range 2 < η < 5 is determined to be ϭ acc = 62:2 ± 0:2 ± 2:5mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section ϭ inel = 75:4 ± 3:0 ± 4:5mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7TeV is also reported
Networking Our Way to Better Ecosystem Service Provision.
The ecosystem services (EcoS) concept is being used increasingly to attach values to natural systems and the multiple benefits they provide to human societies. Ecosystem processes or functions only become EcoS if they are shown to have social and/or economic value. This should assure an explicit connection between the natural and social sciences, but EcoS approaches have been criticized for retaining little natural science. Preserving the natural, ecological science context within EcoS research is challenging because the multiple disciplines involved have very different traditions and vocabularies (common-language challenge) and span many organizational levels and temporal and spatial scales (scale challenge) that define the relevant interacting entities (interaction challenge). We propose a network-based approach to transcend these discipline challenges and place the natural science context at the heart of EcoS research.The QUINTESSENCE Consortium gratefully acknowledges the support of Départment SPE and Métaprogramme ECOSERV of INRA, and the French ANR projects PEERLESS (ANR-12-AGRO-0006) and AgroBioSE (ANR-13-AGRO-0001).This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.tree.2015.12.00
- …