21 research outputs found

    Psychometric properties of the Child Health Assessment Questionnaire (CHAQ) applied to children and adolescents with cerebral palsy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral palsy (CP) patients have motor limitations that can affect functionality and abilities for activities of daily living (ADL). Health related quality of life and health status instruments validated to be applied to these patients do not directly approach the concepts of functionality or ADL. The Child Health Assessment Questionnaire (CHAQ) seems to be a good instrument to approach this dimension, but it was never used for CP patients. The purpose of the study was to verify the psychometric properties of CHAQ applied to children and adolescents with CP.</p> <p>Methods</p> <p>Parents or guardians of children and adolescents with CP, aged 5 to 18 years, answered the CHAQ. A healthy group of 314 children and adolescents was recruited during the validation of the CHAQ Brazilian-version. Data quality, reliability and validity were studied. The motor function was evaluated by the Gross Motor Function Measure (GMFM).</p> <p>Results</p> <p>Ninety-six parents/guardians answered the questionnaire. The age of the patients ranged from 5 to 17.9 years (average: 9.3). The rate of missing data was low (<9.3%). The floor effect was observed in two domains, being higher only in the visual analogue scales (≤ 35.5%). The ceiling effect was significant in all domains and particularly high in patients with quadriplegia (81.8 to 90.9%) and extrapyramidal (45.4 to 91.0%). The Cronbach alpha coefficient ranged from 0.85 to 0.95. The validity was appropriate: for the discriminant validity the correlation of the <it>disability index </it>with the visual analogue scales was not significant; for the convergent validity CHAQ <it>disability index </it>had a strong correlation with the GMFM (0.77); for the divergent validity there was no correlation between GMFM and the pain and overall evaluation scales; for the criterion validity GMFM as well as CHAQ detected differences in the scores among the clinical type of CP (p < 0.01); for the construct validity, the patients' <it>disability index </it>score (mean:2.16; SD:0.72) was higher than the healthy group (mean:0.12; SD:0.23)(p < 0.01).</p> <p>Conclusion</p> <p>CHAQ reliability and validity were adequate to this population. However, further studies are necessary to verify the influence of the ceiling effect on the responsiveness of the instrument.</p

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure &lt;= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt

    Global variations in diabetes mellitus based on fasting glucose and haemogloblin A1c

    Get PDF
    Fasting plasma glucose (FPG) and haemoglobin A1c (HbA1c) are both used to diagnose diabetes, but may identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening had elevated FPG, HbA1c, or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardised proportion of diabetes that was previously undiagnosed, and detected in survey screening, ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the agestandardised proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global gap in diabetes diagnosis and surveillance.peer-reviewe

    Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants.

    Get PDF
    BACKGROUND: Hypertension can be detected at the primary health-care level and low-cost treatments can effectively control hypertension. We aimed to measure the prevalence of hypertension and progress in its detection, treatment, and control from 1990 to 2019 for 200 countries and territories. METHODS: We used data from 1990 to 2019 on people aged 30-79 years from population-representative studies with measurement of blood pressure and data on blood pressure treatment. We defined hypertension as having systolic blood pressure 140 mm Hg or greater, diastolic blood pressure 90 mm Hg or greater, or taking medication for hypertension. We applied a Bayesian hierarchical model to estimate the prevalence of hypertension and the proportion of people with hypertension who had a previous diagnosis (detection), who were taking medication for hypertension (treatment), and whose hypertension was controlled to below 140/90 mm Hg (control). The model allowed for trends over time to be non-linear and to vary by age. FINDINGS: The number of people aged 30-79 years with hypertension doubled from 1990 to 2019, from 331 (95% credible interval 306-359) million women and 317 (292-344) million men in 1990 to 626 (584-668) million women and 652 (604-698) million men in 2019, despite stable global age-standardised prevalence. In 2019, age-standardised hypertension prevalence was lowest in Canada and Peru for both men and women; in Taiwan, South Korea, Japan, and some countries in western Europe including Switzerland, Spain, and the UK for women; and in several low-income and middle-income countries such as Eritrea, Bangladesh, Ethiopia, and Solomon Islands for men. Hypertension prevalence surpassed 50% for women in two countries and men in nine countries, in central and eastern Europe, central Asia, Oceania, and Latin America. Globally, 59% (55-62) of women and 49% (46-52) of men with hypertension reported a previous diagnosis of hypertension in 2019, and 47% (43-51) of women and 38% (35-41) of men were treated. Control rates among people with hypertension in 2019 were 23% (20-27) for women and 18% (16-21) for men. In 2019, treatment and control rates were highest in South Korea, Canada, and Iceland (treatment >70%; control >50%), followed by the USA, Costa Rica, Germany, Portugal, and Taiwan. Treatment rates were less than 25% for women and less than 20% for men in Nepal, Indonesia, and some countries in sub-Saharan Africa and Oceania. Control rates were below 10% for women and men in these countries and for men in some countries in north Africa, central and south Asia, and eastern Europe. Treatment and control rates have improved in most countries since 1990, but we found little change in most countries in sub-Saharan Africa and Oceania. Improvements were largest in high-income countries, central Europe, and some upper-middle-income and recently high-income countries including Costa Rica, Taiwan, Kazakhstan, South Africa, Brazil, Chile, Turkey, and Iran. INTERPRETATION: Improvements in the detection, treatment, and control of hypertension have varied substantially across countries, with some middle-income countries now outperforming most high-income nations. The dual approach of reducing hypertension prevalence through primary prevention and enhancing its treatment and control is achievable not only in high-income countries but also in low-income and middle-income settings. FUNDING: WHO

    Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants

    Get PDF
    Background Hypertension can be detected at the primary health-care level and low-cost treatments can effectively control hypertension. We aimed to measure the prevalence of hypertension and progress in its detection, treatment, and control from 1990 to 2019 for 200 countries and territories. Methods We used data from 1990 to 2019 on people aged 30–79 years from population-representative studies with measurement of blood pressure and data on blood pressure treatment. We defined hypertension as having systolic blood pressure 140 mm Hg or greater, diastolic blood pressure 90 mm Hg or greater, or taking medication for hypertension. We applied a Bayesian hierarchical model to estimate the prevalence of hypertension and the proportion of people with hypertension who had a previous diagnosis (detection), who were taking medication for hypertension (treatment), and whose hypertension was controlled to below 140/90 mm Hg (control). The model allowed for trends over time to be non-linear and to vary by age. Findings The number of people aged 30–79 years with hypertension doubled from 1990 to 2019, from 331 (95% credible interval 306–359) million women and 317 (292–344) million men in 1990 to 626 (584–668) million women and 652 (604–698) million men in 2019, despite stable global age-standardised prevalence. In 2019, age-standardised hypertension prevalence was lowest in Canada and Peru for both men and women; in Taiwan, South Korea, Japan, and some countries in western Europe including Switzerland, Spain, and the UK for women; and in several low-income and middle-income countries such as Eritrea, Bangladesh, Ethiopia, and Solomon Islands for men. Hypertension prevalence surpassed 50% for women in two countries and men in nine countries, in central and eastern Europe, central Asia, Oceania, and Latin America. Globally, 59% (55–62) of women and 49% (46–52) of men with hypertension reported a previous diagnosis of hypertension in 2019, and 47% (43–51) of women and 38% (35–41) of men were treated. Control rates among people with hypertension in 2019 were 23% (20–27) for women and 18% (16–21) for men. In 2019, treatment and control rates were highest in South Korea, Canada, and Iceland (treatment >70%; control >50%), followed by the USA, Costa Rica, Germany, Portugal, and Taiwan. Treatment rates were less than 25% for women and less than 20% for men in Nepal, Indonesia, and some countries in sub-Saharan Africa and Oceania. Control rates were below 10% for women and men in these countries and for men in some countries in north Africa, central and south Asia, and eastern Europe. Treatment and control rates have improved in most countries since 1990, but we found little change in most countries in sub-Saharan Africa and Oceania. Improvements were largest in high-income countries, central Europe, and some upper-middle-income and recently high-income countries including Costa Rica, Taiwan, Kazakhstan, South Africa, Brazil, Chile, Turkey, and Iran. Interpretation Improvements in the detection, treatment, and control of hypertension have varied substantially across countries, with some middle-income countries now outperforming most high-income nations. The dual approach of reducing hypertension prevalence through primary prevention and enhancing its treatment and control is achievable not only in high-income countries but also in low-income and middle-income settings

    Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants

    Get PDF
    Background Hypertension can be detected at the primary health-care level and low-cost treatments can effectively control hypertension. We aimed to measure the prevalence of hypertension and progress in its detection, treatment, and control from 1990 to 2019 for 200 countries and territories. Methods We used data from 1990 to 2019 on people aged 30–79 years from population-representative studies with measurement of blood pressure and data on blood pressure treatment. We defined hypertension as having systolic blood pressure 140 mm Hg or greater, diastolic blood pressure 90 mm Hg or greater, or taking medication for hypertension. We applied a Bayesian hierarchical model to estimate the prevalence of hypertension and the proportion of people with hypertension who had a previous diagnosis (detection), who were taking medication for hypertension (treatment), and whose hypertension was controlled to below 140/90 mm Hg (control). The model allowed for trends over time to be non-linear and to vary by age. Findings The number of people aged 30–79 years with hypertension doubled from 1990 to 2019, from 331 (95% credible interval 306–359) million women and 317 (292–344) million men in 1990 to 626 (584–668) million women and 652 (604–698) million men in 2019, despite stable global age-standardised prevalence. In 2019, age-standardised hypertension prevalence was lowest in Canada and Peru for both men and women; in Taiwan, South Korea, Japan, and some countries in western Europe including Switzerland, Spain, and the UK for women; and in several low-income and middle-income countries such as Eritrea, Bangladesh, Ethiopia, and Solomon Islands for men. Hypertension prevalence surpassed 50% for women in two countries and men in nine countries, in central and eastern Europe, central Asia, Oceania, and Latin America. Globally, 59% (55–62) of women and 49% (46–52) of men with hypertension reported a previous diagnosis of hypertension in 2019, and 47% (43–51) of women and 38% (35–41) of men were treated. Control rates among people with hypertension in 2019 were 23% (20–27) for women and 18% (16–21) for men. In 2019, treatment and control rates were highest in South Korea, Canada, and Iceland (treatment >70%; control >50%), followed by the USA, Costa Rica, Germany, Portugal, and Taiwan. Treatment rates were less than 25% for women and less than 20% for men in Nepal, Indonesia, and some countries in sub-Saharan Africa and Oceania. Control rates were below 10% for women and men in these countries and for men in some countries in north Africa, central and south Asia, and eastern Europe. Treatment and control rates have improved in most countries since 1990, but we found little change in most countries in sub-Saharan Africa and Oceania. Improvements were largest in high-income countries, central Europe, and some upper-middle-income and recently high-income countries including Costa Rica, Taiwan, Kazakhstan, South Africa, Brazil, Chile, Turkey, and Iran. Interpretation Improvements in the detection, treatment, and control of hypertension have varied substantially across countries, with some middle-income countries now outperforming most high-income nations. The dual approach of reducing hypertension prevalence through primary prevention and enhancing its treatment and control is achievable not only in high-income countries but also in low-income and middle-income settings

    Trends in cardiometabolic risk factors in the Americas between 1980 and 2014: a pooled analysis of population-based surveys

    No full text
    Background: Describing the prevalence and trends of cardiometabolic risk factors that are associated with noncommunicable diseases (NCDs) is crucial for monitoring progress, planning prevention, and providing evidence to support policy efforts. We aimed to analyse the transition in body-mass index (BMI), obesity, blood pressure, raised blood pressure, and diabetes in the Americas, between 1980 and 2014. Methods: We did a pooled analysis of population-based studies with data on anthropometric measurements, biomarkers for diabetes, and blood pressure from adults aged 18 years or older. A Bayesian model was used to estimate trends in BMI, raised blood pressure (systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg), and diabetes (fasting plasma glucose ≥7•0 mmol/L, history of diabetes, or diabetes treatment) from 1980 to 2014, in 37 countries and six subregions of the Americas. Findings: 389 population-based surveys from the Americas were available. Comparing prevalence estimates from 2014 with those of 1980, in the non-English speaking Caribbean subregion, the prevalence of obesity increased from 3•9% (95% CI 2•2–6•3) in 1980, to 18•6% (14•3–23•3) in 2014, in men; and from 12•2% (8•2–17•0) in 1980, to 30•5% (25•7–35•5) in 2014, in women. The English-speaking Caribbean subregion had the largest increase in the prevalence of diabetes, from 5•2% (2•1–10•4) in men and 6•4% (2•6–10•4) in women in 1980, to 11•1% (6•4–17•3) in men and 13•6% (8•2–21•0) in women in 2014). Conversely, the prevalence of raised blood pressure has decreased in all subregions; the largest decrease was found in North America from 27•6% (22•3–33•2) in men and 19•9% (15•8–24•4) in women in 1980, to 15•5% (11•1–20•9) in men and 10•7% (7•7–14•5) in women in 2014. Interpretation: Despite the generally high prevalence of cardiometabolic risk factors across the Americas, estimates also showed a high level of heterogeneity in the transition between countries. The increasing prevalence of obesity and diabetes observed over time requires appropriate measures to deal with these public health challenges. Our results support a diversification of health interventions across subregions and countries.Fil: Miranda, J. Jaime. Universidad Peruana Cayetano Heredia; PerúFil: Carrillo-Larco, Rodrigo M.. Imperial College London; Reino UnidoFil: Ferreccio, Catterina. Pontificia Universidad Católica de Chile; ChileFil: Hambleton, Ian R.. The University Of The West Indies; BarbadosFil: Lotufo, Paulo A.. Universidade de Sao Paulo; BrasilFil: Nieto-Martinez, Ramfis. Miami Veterans Affairs Healthcare System; Estados UnidosFil: Zhou, Bin. Imperial College London; Reino UnidoFil: Bentham, James. University Of Kent; Reino UnidoFil: Bixby, Honor. Imperial College London; Reino UnidoFil: Hajifathalian, Kaveh. Cleveland Clinic; Estados UnidosFil: Lu, Yuan. University of Yale; Estados UnidosFil: Taddei, Cristina. Imperial College London; Reino UnidoFil: Abarca-Gomez, Leandra. Caja Costarricense de Seguro Social; Costa RicaFil: Acosta-Cazares, Benjamin. Instituto Mexicano del Seguro Social; MéxicoFil: Aguilar-Salinas, Carlos A.. (Instituto Nacional de Ciencias Médicas y Nutrición; MéxicoFil: Andrade, Dolores S.. Universidad de Cuenca; EcuadorFil: Assunção, Maria Cecilia F.. Universidade Federal de Pelotas; BrasilFil: Barcelo, Alberto. Pan American Health Organization; Estados UnidosFil: Barros, Aluisio J.D.. Universidade Federal de Pelotas; BrasilFil: Barros, Mauro V.G.. Universidade de Pernambuco; BrasilFil: Bata, Iqbal. Dalhousie University Halifax; CanadáFil: Batista, Rosangela L.. Universidade Federal Do Maranhao; BrasilFil: Benet, Mikhail. Cafam University Foundation; ColombiaFil: Bernabe-Ortiz, Antonio. Universidad Peruana Cayetano Heredia; PerúFil: Bettiol, Heloisa. Universidade de Sao Paulo; BrasilFil: Boggia, Jose G.. Universidad de la Republica; UruguayFil: Boissonnet, Carlos P.. Centro de Educación Médica e Investigaciones Clínicas; ArgentinaFil: Brewster, Lizzy M.. University of Amsterdam; Países BajosFil: Cameron, Christine. Canadian Fitness and Lifestyle Research Institute; CanadáFil: Cândido, Ana Paula C.. Universidade Federal de Juiz de Fora; BrasilFil: Cardoso, Viviane C.. Universidade de Sao Paulo; BrasilFil: Chan, Queenie. Imperial College London; Reino UnidoFil: Christofaro, Diego G.. Universidade Estadual Paulista; BrasilFil: Confortin, Susana C.. Universidade Federal de Santa Catarina; BrasilFil: Craig, Cora L.. Canadian Fitness and Lifestyle Research Institute; CanadáFil: d'Orsi, Eleonora. Universidade Federal de Santa Catarina; BrasilFil: Delisle, Hélène. University of Montreal; CanadáFil: De Oliveira, Paula Duarte. Universidade Federal de Pelotas; BrasilFil: Dias-da-Costa, Juvenal Soares. Universidade do Vale do Rio Dos Sinos; BrasilFil: Diaz, Alberto Alejandro. Universidad Nacional del Centro de la Provincia de Buenos Aires. Escuela Superior de Ciencias de la Salud. Instituto de Investigación en Ciencias de la Salud; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Provincia de Buenos Aires. Municipalidad de Tandil. Hospital Municipal Ramón Santamarina; ArgentinaFil: Donoso, Silvana P.. Universidad de Cuenca; EcuadorFil: Elliott, Paul. Imperial College London; Reino UnidoFil: Escobedo-de La Peña, Jorge. Instituto Mexicano del Seguro Social; MéxicoFil: Ferguson, Trevor S.. The University of The West Indies; JamaicaFil: Fernandes, Romulo A.. Universidade Estadual Paulista; BrasilFil: Ferrante, Daniel. Ministerio de Salud; ArgentinaFil: Flores, Eric Monterubio. Instituto Nacional de Salud Pública; MéxicoFil: Francis, Damian K.. The University of The West Indies; JamaicaFil: Do Carmo Franco, Maria. Universidade Federal de Sao Paulo; BrasilFil: Fuchs, Flavio D.. Hospital de Clinicas de Porto Alegre; BrasilFil: Fuchs, Sandra C.. Universidade Federal do Rio Grande do Sul; BrasilFil: Goltzman, David. Université McGill; CanadáFil: Gonçalves, Helen. Universidade Federal de Pelotas; BrasilFil: Gonzalez-Rivas, Juan P.. The Andes Clinic Of Cardio-Metabolic Studies; VenezuelaFil: Gorbea, Mariano Bonet. Instituto Nacional de Higiene, Epidemiología y Microbiología; CubaFil: Gregor, Ronald D.. Dalhousie University Halifax; CanadáFil: Guerrero, Ramiro. Universidad Icesi; ColombiaFil: Guimaraes, Andre L.. Universidade Estadual de Montes Claros; BrasilFil: Gulliford, Martin C.. King’s College London; Reino UnidoFil: Gutierrez, Laura. Instituto de Efectividad Clínica y Sanitaria; ArgentinaFil: Hernandez Cadena, Leticia. Instituto Nacional de Salud Pública; MéxicoFil: Herrera, Víctor M.. (Universidad Autónoma de Bucaramanga; ColombiaFil: Hopman, Wilma M.. Kingston General Hospital; CanadáFil: Horimoto, Andrea RVR. Instituto do Coração; BrasilFil: Hormiga, Claudia M.. Fundación Oftalmológica de Santander; ColombiaFil: Horta, Bernardo L.. Universidade Federal de Pelotas; BrasilFil: Howitt, Christina. The University of the West Indies; BarbadosFil: Irazola, Wilma E.. Instituto de Efectividad Clínica y Sanitaria; ArgentinaFil: Jiménez-Acosta, Santa Magaly. Instituto Nacional de Higiene, Epidemiología y Microbiología; CubaFil: Joffres, Michel. Simon Fraser University; CanadáFil: Kolsteren, Patricia. (Institute of Tropical Medicine; BélgicaFil: Landrove, Orlando. Ministerio de Salud Pública; CubaFil: Li, Yanping. Harvard TH Chan School of Public Health; Estados UnidosFil: Lilly, Christa L.. West Virginia University; Estados UnidosFil: Lima-Costa, M. Fernanda. Fundação Oswaldo Cruz; BrasilFil: Louzada Strufaldi, Maria Wany. Universidade Federal de Sao Paulo; BrasilFil: Machado-Coelho, George L. L.. Universidade Federal de Ouro Preto; BrasilFil: Makdisse, Marcia. Hospital Israelita Albert Einstein; BrasilFil: Margozzini, Paula. Pontificia Universidad Católica de Chile; ChileFil: Pruner Marques, Larissa. Universidade Federal de Santa Catarina; BrasilFil: Martorell, Reynaldo. Emory University; Estados UnidosFil: Mascarenhas, Luis. Universidade Federal do Paraná; BrasilFil: Matijasevich, Alicia. Universidade Federal de Sao Paulo; BrasilFil: Mc Donald Posso, Anselmo J.. Gorgas Memorial Institute of Health Studies; PanamáFil: McFarlane, Shelly R.. The University of the West Indies; JamaicaFil: McLean, Scott B.. (Statistics Canada; CanadáFil: Menezes, Ana Maria B.. Universidade Federal de Pelotas; BrasilFil: Miquel, Juan Francisco. Pontificia Universidad Católica de Chile; ChileFil: Mohanna, Salim. Universidad Peruana Cayetano Heredia; PerúFil: Monterrubio, Eric A.. Instituto Nacional de Salud Pública; MéxicoFil: Moreira, Leila B.. Universidade Federal do Rio Grande do Sul; BrasilFil: Morejon, Alain. Universidad de Ciencias Médicas; CubaFil: Motta, Jorge. Gorgas Memorial Institute of Public Health; PanamáFil: Neal, William A.. West Virginia University; Estados UnidosFil: Nervi, Flavio. Pontificia Universidad Católica de Chile; ChileFil: Noboa, Oscar A.. Universidad de la República; UruguayFil: Ochoa-Avilés, Angélica M.. Universidad de Cuenca; EcuadorFil: Olinto, Maria Teresa Anselmo. Universidad de Vale do Rio dos Sinos; BrasilFil: Oliveira, Isabel O.. Universidade Federal de Pelotas; BrasilFil: Ono, Lariane M.. Universidade Federal de Santa Catarina; BrasilFil: Ordunez, Pedro. Pan American Health Organization; Estados UnidosFil: Ortiz, Ana P.. Universidad de Puerto Rico; Puerto RicoFil: Otero, Johanna A.. Fundación Oftalmológica de Santander; ColombiaFil: Palloni, Alberto. University of Wisconsin-Madison; Estados UnidosFil: Viana Peixoto, Sergio. Fundação Oswaldo Cruz; BrasilFil: Pereira, Alexandre C.. Instituto do Coração; BrasilFil: Pérez, Cynthia M.. Universidad de Puerto Rico; Puerto RicoFil: Rangel Reina, Daniel A.. Gorgas Memorial Institute of Health Studies; PanamáFil: Ribeiro, Robespierre. Secretaria de Estado de Saúde de Minas Gerais; BrasilFil: Ritti-Dias, Raphael M.. Universidade Nove de Julho; BrasilFil: Rivera, Juan A.. Instituto Nacional de Salud Pública; MéxicoFil: Robitaille, Cynthia. Public Health Agency of Canada; CanadáFil: Rodríguez-Villamizar, Laura A.. Universidad Industrial de Santander; ColombiaFil: Rojas-Martinez, Rosalba. Instituto Nacional de Salud Pública; MéxicoFil: Roy, Joel G. R.. Statistics Canada; CanadáFil: Rubinstein, Adolfo Luis. Instituto de Efectividad Clínica y Sanitaria; ArgentinaFil: Ruiz-Betancourt, Blanca Sandra. Instituto Mexicano del Seguro Social; MéxicoFil: Salazar Martinez, Eduardo. Instituto Nacional de Salud Pública; MéxicoFil: Sánchez-Abanto, José. Instituto Nacional de Salud; PerúFil: Santos , Ina S.. Universidade Federal de Pelotas; BrasilFil: dos Santos, Renata Nunes. Universidade Federal de Sao Paulo; BrasilFil: Scazufca, Marcia. Universidade Federal de Sao Paulo; BrasilFil: Schargrodsky, Herman. Hospital Italiano; ArgentinaFil: Silva, Antonio M.. Universidade Federal do Maranhao; BrasilFil: Santos Silva, Diego Augusto. Universidade Federal de Santa Catarina; BrasilFil: Stein, Aryeh D.. Emory University; Estados UnidosFil: Suárez-Medina, Ramón. Instituto Nacional de Higiene, Epidemiología y Microbiología; CubaFil: Tarqui-Mamani, Carolina B.. Instituto Nacional de Salud; PerúFil: Tulloch-Reid, Marshall K.. The University of the West Indies; JamaicaFil: Ueda, Peter. Harvard TH Chan School of Public Health; Estados UnidosFil: Ugel, Eunice E.. Universidad Centro-Occidental Lisandro Alvarado; VenezuelaFil: Valdivia, Gonzalo. Pontificia Universidad Católica de Chile; ChileFil: Varona, Patricia. Instituto Nacional de Higiene, Epidemiología y Microbiología; CubaFil: Velasquez-Melendez, Gustavo. Universidade Federal de Minas Gerais; BrasilFil: Verstraeten, Roosmarijn. Institute of Tropical Medicine; BélgicaFil: Victora, Cesar G.. Universidade Federal de Pelotas; BrasilFil: Wanderley Jr, Rildo S.. Universidade Federal de Pernambuco; BrasilFil: Wang, Ming-Dong. Public Health Agency of Canada; CanadáFil: Wilks, Rainford J.. The University of the West Indies; JamaicaFil: Wong-McClure, Roy A.. Caja Costarricense de Seguro Social; Costa RicaFil: Younger-Coleman, Novie O.. The University of the West Indies; JamaicaFil: Zuñiga Cisneros, Julio. Gorgas Memorial Institute of Public Health; PanamáFil: Danaei, Goodarz. Harvard TH Chan School of Public Health; Estados UnidosFil: Stevens, Gretchen A.. World Health Organization; SuizaFil: Riley, Leanne M.. World Health Organization; SuizaFil: Ezzati, Majid. (Imperial College London; Reino UnidoFil: Di Cesare, Mariachiara. Middlesex University; Reino Unid

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    No full text
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.13Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt
    corecore