63 research outputs found
Childhood cognitive ability and physical activity in young adulthood
Objective: Childhood cognitive ability is associated with lifestyle in adulthood, including self-reported physical activity (PA). We examined whether childhood cognitive ability is associated with objectively-measured PA and sedentary time (ST) in young adulthood.
Methods: Participants of the Arvo YlppĂś Longitudinal Study (n=500) underwent tests of general reasoning, visuo-motor integration, verbal competence and language comprehension at the age of 56 months yielding a general intelligence factor score; at the age of 25 years they wore omnidirectional accelerometers for 9 days (Range=4-10 days) measuring overall daily PA (counts per minute, cpm), ST and light and moderate-to-vigorous PA (MVPA) (minutes), and completed a questionnaire on occupational, commuting, leisure-time conditioning and non-conditioning PA.
Results: After adjustment for sex, age, BMI-for-age SD score at 56 months and mean of valid minutes of measurement period for PA, per each one SD increase in the childhood general intelligence factor score, overall daily PA decreased by -8.99 CPM/day, ST increased by 14.93 minutes/day, time spent in light PA decreased by -14.39 minutes/day, and the odds per each level increase in physical demandingness of the work and in time spent in non-conditioning leisure-time PA decreased by 38% and 31%, respectively (p-values<0.04). These associations were mediated via higher young adulthood level of education.
Conclusions: In contrast to expected, in this cohort of young adults with high variability in PA, of whom many were still studying, higher childhood cognitive ability was associated with more objectively-measured and self-reported physical inactivity. Whether these findings persist beyond young adulthood is a subject of further studies
Work careers in adults separated temporarily from their parents in childhood during World War II
Introduction: Traumatic experiences, such as separation from parents in childhood causing early life stress (ELS) may increase the risk of adverse long-term health outcomes and biological age-related changes. This may have an impact on work career. Our aim was to examine long term consequences of ELS due to temporary separation from parents during World War II (WWII) in relation to work career. Material and methods: The Helsinki Birth Cohort Study comprises 13,345 individuals born in Helsinki, Finland, between the years 1934-1944. From the original cohort, 1781 individuals were identified as being separated temporarily from their parents due to World War II. Information on date and type of pension was provided by the Finnish Centre for Pensions and the Social Insurance Institution of Finland. The cohort members either transitioned into old age pension at the statutory retirement age or retired earlier and transitioned into disability, unemployment, part-time pension or died before retirement. Results: Those who were separated were more likely to have transitioned into disability pension (RRR: 1.26: 95% CI: 1.06-1.48), especially due to diseases of the musculoskeletal system (OR: 1.57; 95% CI: 1.20-2.07), or into unemployment pension (RRR: 1.25; 95% CI: 1.02-1.53) compared with those not separated from their parents. Longer duration of separation was associated with early exit from the workforce compared with non-separation. Conclusions: Exposure to ELS may have an impact upon lifetime work career. Early interventions preventing exposure to ELS or mitigating its negative effects may prolong future work careers along with healthier aging across the life-span.Peer reviewe
Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-ÎşB-driven inflammation and cardiovascular risk
Aging and psychosocial stress are associated with increased inflammation and disease risk, but the underlying molecular mechanisms are unclear. Because both aging and stress are also associated with lasting epigenetic changes, a plausible hypothesis is that stress along the lifespan could confer disease risk through epigenetic effects on molecules involved in inflammatory processes. Here, by combining large-scale analyses in human cohorts with experiments in cells, we report that FKBP5, a protein implicated in stress physiology, contributes to these relations. Across independent human cohorts (total n > 3,000), aging synergized with stress-related phenotypes, measured with childhood trauma and major depression questionnaires, to epigenetically up-regulate FKBP5 expression. These age/stress-related epigenetic effects were recapitulated in a cellular model of replicative senescence, whereby we exposed replicating human fibroblasts to stress (glucocorticoid) hormones. Unbiased genome-wide analyses in human blood linked higher FKBP5 mRNA with a proinflammatory profile and altered NF-kappa B-related gene networks. Accordingly, experiments in immune cells showed that higher FKBP5 promotes inflammation by strengthening the interactions of NF-kappa B regulatory kinases, whereas opposing FKBP5 either by genetic deletion (CRISPR/Cas9-mediated) or selective pharmacological inhibition prevented the effects on NF-kappa B. Further, the age/stress-related epigenetic signature enhanced FKBP5 response to NF-kappa B through a positive feedback loop and was present in individuals with a history of acute myocardial infarction, a disease state linked to peripheral inflammation. These findings suggest that aging/stress-driven FKBP5-NF-kappa B signaling mediates inflammation, potentially contributing to cardiovascular risk, and may thus point to novel biomarker and treatment possibilities
Pleiotropic meta-analysis of cognition, education, and schizophrenia differentiates roles of early neurodevelopmental and adult synaptic pathways
Susceptibility to schizophrenia is inversely correlated with general cognitive ability at both the phenotypic and the genetic level. Paradoxically, a modest but consistent positive genetic correlation has been reported between schizophrenia and educational attainment, despite the strong positive genetic correlation between cognitive ability and educational attainment. Here we leverage published genome-wide association studies (GWASs) in cognitive ability, education, and schizophrenia to parse biological mechanisms underlying these results. Association analysis based on subsets (ASSET), a pleiotropic meta-analytic technique, allowed jointly associated loci to be identified and characterized. Specifically, we identified subsets of variants associated in the expected (âconcordantâ) direction across all three phenotypes (i.e., greater risk for schizophrenia, lower cognitive ability, and lower educational attainment); these were contrasted with variants that demonstrated the counterintuitive (âdiscordantâ) relationship between education and schizophrenia (i.e., greater risk for schizophrenia and higher educational attainment). ASSET analysis revealed 235 independent loci associated with cognitive ability, education, and/or schizophrenia at p < 5 Ă 10â8. Pleiotropic analysis successfully identified more than 100 loci that were not significant in the input GWASs. Many of these have been validated by larger, more recent single-phenotype GWASs. Leveraging the joint genetic correlations of cognitive ability, education, and schizophrenia, we were able to dissociate two distinct biological mechanismsâearly neurodevelopmental pathways that characterize concordant allelic variation and adulthood synaptic pruning pathwaysâthat were linked to the paradoxical positive genetic association between education and schizophrenia. Furthermore, genetic correlation analyses revealed that these mechanisms contribute not only to the etiopathogenesis of schizophrenia but also to the broader biological dimensions implicated in both general health outcomes and psychiatric illness
Identifying nootropic drug targets via large-scale cognitive GWAS and transcriptomics
Broad-based cognitive deficits are an enduring and disabling symptom for many patients with severe mental illness, and these impairments are inadequately addressed by current medications. While novel drug targets for schizophrenia and depression have emerged from recent large-scale genome-wide association studies (GWAS) of these psychiatric disorders, GWAS of general cognitive ability can suggest potential targets for nootropic drug repurposing. Here, we (1) meta-analyze results from two recent cognitive GWAS to further enhance power for locus discovery; (2) employ several complementary transcriptomic methods to identify genes in these loci that are credibly associated with cognition; and (3) further annotate the resulting genes using multiple chemoinformatic databases to identify "druggable" targets. Using our meta-analytic data set (N = 373,617), we identified 241 independent cognition-associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. Actin and chromatin binding gene sets were identified as novel pathways that could be targeted via drug repurposing. Leveraging our transcriptomic and chemoinformatic databases, we identified 16 putative genes targeted by existing drugs potentially available for cognitive repurposing.Peer reviewe
FoxO1, A2M, and TGF-beta 1 : three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses
To date, gene-environment (GxE) interaction studies in depression have been limited to hypothesis-based candidate genes, since genome-wide (GWAS)-based GxE interaction studies would require enormous datasets with genetics, environmental, and clinical variables. We used a novel, cross-species and cross-tissues "omics" approach to identify genes predicting depression in response to stress in GxE interactions. We integrated the transcriptome and miRNome profiles from the hippocampus of adult rats exposed to prenatal stress (PNS) with transcriptome data obtained from blood mRNA of adult humans exposed to early life trauma, using a stringent statistical analyses pathway. Network analysis of the integrated gene lists identified the Forkhead box protein O1 (FoxO1), Alpha-2-Macroglobulin (A2M), and Transforming Growth Factor Beta 1 (TGF-beta 1) as candidates to be tested for GxE interactions, in two GWAS samples of adults either with a range of childhood traumatic experiences (Grady Study Project, Atlanta, USA) or with separation from parents in childhood only (Helsinki Birth Cohort Study, Finland). After correction for multiple testing, a meta-analysis across both samples confirmed six FoxO1 SNPs showing significant GxE interactions with early life emotional stress in predicting depressive symptoms. Moreover, in vitro experiments in a human hippocampal progenitor cell line confirmed a functional role of FoxO1 in stress responsivity. In secondary analyses, A2M and TGF-beta 1 showed significant GxE interactions with emotional, physical, and sexual abuse in the Grady Study. We therefore provide a successful 'hypothesis-free' approach for the identification and prioritization of candidate genes for GxE interaction studies that can be investigated in GWAS datasets.Peer reviewe
Hypertensive Disorders of Pregnancy and DNA Methylation in Newborns Findings From the Pregnancy and Childhood Epigenetics Consortium
Hypertensive disorders of pregnancy (HDP) are associated with low birth weight, shorter gestational age, and increased risk of maternal and offspring cardiovascular diseases later in life. The mechanisms involved are poorly understood, but epigenetic regulation of gene expression may play a part. We performed meta-analyses in the Pregnancy and Childhood Epigenetics Consortium to test the association between either maternal HDP (10 cohorts; n=5242 [cases=476]) or preeclampsia (3 cohorts; n=2219 [cases=135]) and epigenome-wide DNA methylation in cord blood using the Illumina HumanMethylation450 BeadChip. In models adjusted for confounders, and with Bonferroni correction, HDP and preeclampsia were associated with DNA methylation at 43 and 26 CpG sites, respectively. HDP was associated with higher methylation at 27 (63%) of the 43 sites, and across all 43 sites, the mean absolute difference in methylation was between 0.6% and 2.6%. Epigenome-wide associations of HDP with offspring DNA methylation were modestly consistent with the equivalent epigenome-wide associations of preeclampsia with offspring DNA methylation (R2=0.26). In longitudinal analyses conducted in 1 study (n=108 HDP cases; 550 controls), there were similar changes in DNA methylation in offspring of those with and without HDP up to adolescence. Pathway analysis suggested that genes located at/near HDP-associated sites may be involved in developmental, embryogenesis, or neurological pathways. HDP is associated with offspring DNA methylation with potential relevance to development
The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects
The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.Peer reviewe
- âŚ