30 research outputs found

    The Hindi version of the Juvenile Arthritis Multidimensional Assessment Report (JAMAR)

    Get PDF
    The Juvenile Arthritis Multidimensional Assessment Report (JAMAR) is a new parent/patient-reported outcome measure that enables a thorough assessment of the disease status in children with juvenile idiopathic arthritis (JIA). We report the results of the cross-cultural adaptation and validation of the parent and patient versions of the JAMAR in the Hindi language. The reading comprehension of the questionnaire was tested in ten JIA parents and patients. Each participating centre was asked to collect demographic, clinical data and the JAMAR in 100 consecutive JIA patients or all consecutive patients seen in a 6-month period and to administer the JAMAR to 100 healthy children and their parents. The statistical validation phase explored descriptive statistics and the psychometric issues of the JAMAR: the three Likert assumptions, floor/ceiling effects, internal consistency, Cronbach\u2019s alpha, interscale correlations, test\u2013retest reliability, and construct validity (convergent and discriminant validity). A total of 275 JIA patients (28.4% systemic, 10.9% oligoarticular, 13.8% RF negative polyarthritis, 46.9% other categories) and 98 healthy children were enrolled in three centres. The JAMAR components discriminated well healthy subjects from JIA patients. Notably, there is no significant difference between the healthy subjects and their affected peers in the school-related problems variable. All JAMAR components revealed good psychometric performances. In conclusion, the Hindi version of the JAMAR is a valid tool for the assessment of children with JIA and is suitable for use both in routine clinical practice and clinical research

    What is the state of the art on traditional medicine interventions for zoonotic diseases in the Indian subcontinent? A scoping review of the peer-reviewed evidence base

    Get PDF
    •Background: Traditional medicine (TM) interventions are plausible therapeutic alternatives to conventional medical interventions against emerging and endemic zoonotic diseases, particularly in low-and middle-income countries that may lack resources and infrastructure. Despite the growing popularity in the usage of TM interventions, their clinical safety and effectiveness are still contested within conventional healthcare in many countries. •Methods: We conducted a scoping review of the peer-reviewed literature that synthesises and maps the evidence on TM interventions for the treatment and prevention of zoonoses on the Indian subcontinent. The region, a global hotspot of biodiversity and emerging infections, is characterised by high prevalence of TM use. Based on the scientific literature (mostly case study research, n=l06 studies), our review (1) maps the scope of the literature, (2) synthesises the evidence on the application of TM interventions for zoonoses, and (3) critically reflects on the state of TM and identifies areas for future research focus. •Results: The evidence synthesis confirmed widespread usage of TM interventions for zoonoses on the subcontinent, with the majority of research reported from India (n=99 studies, 93.4%), followed by Pakistan (n=3 studies, 2.8%), Bangladesh (n=2 studies, 1.9%), and Sri Lanka (n=1, 0.9%). Most of the reviewed studies reported on ethno-medicinal uses of plant species, primarily for treating dengue (n=20 studies), tuberculosis (n=18 studies), Escherichia coli infection (n=16 studies), lymphatic filariasis and cholera (n=9 apiece). However, the evidence on the safety and effectiveness of these reported TM interventions is limited, indicating that these data are rarely collected and/or shared within the peer-reviewed literature. •Conclusion: This review thus highlights that, whilst TMs are already being used and could offer more widely accessible interventions against emerging and endemic zoonoses and ectoparasites, there is an urgent need for rigorous clinical testing and validation of the safety and effectiveness of these interventions

    Predicting disease risk areas through co-production of spatial models: the example of Kyasanur Forest Disease in India’s forest landscapes

    Get PDF
    Zoonotic diseases affect resource-poor tropical communities disproportionately, and are linked to human use and modification of ecosystems. Disentangling the socio-ecological mechanisms by which ecosystem change precipitates impacts of pathogens is critical for predicting disease risk and designing effective intervention strategies. Despite the global “One Health” initiative, predictive models for tropical zoonotic diseases often focus on narrow ranges of risk factors and are rarely scaled to intervention programs and ecosystem use. This study uses a participatory, co-production approach to address this disconnect between science, policy and implementation, by developing more informative disease models for a fatal tick-borne viral haemorrhagic disease, Kyasanur Forest Disease (KFD), that is spreading across degraded forest ecosystems in India. We integrated knowledge across disciplines to identify key risk factors and needs with actors and beneficiaries across the relevant policy sectors, to understand disease patterns and develop decision support tools. Human case locations (2014–2018) and spatial machine learning quantified the relative role of risk factors, including forest cover and loss, host densities and public health access, in driving landscape-scale disease patterns in a long-affected district (Shivamogga, Karnataka State). Models combining forest metrics, livestock densities and elevation accurately predicted spatial patterns in human KFD cases (2014–2018). Consistent with suggestions that KFD is an “ecotonal” disease, landscapes at higher risk for human KFD contained diverse forest-plantation mosaics with high coverage of moist evergreen forest and plantation, high indigenous cattle density, and low coverage of dry deciduous forest. Models predicted new hotspots of outbreaks in 2019, indicating their value for spatial targeting of intervention. Co-production was vital for: gathering outbreak data that reflected locations of exposure in the landscape; better understanding contextual socio-ecological risk factors; and tailoring the spatial grain and outputs to the scale of forest use, and public health interventions. We argue this inter-disciplinary approach to risk prediction is applicable across zoonotic diseases in tropical settings

    Co-production of knowledge as part of a OneHealth approach to better control zoonotic diseases

    Get PDF
    There is increased global and national attention on the need for effective strategies to control zoonotic diseases. Quick, effective action is, however, hampered by poor evidence-bases and limited coordination between stakeholders from relevant sectors such as public and animal health, wildlife and forestry sectors at different scales, who may not usually work together. The OneHealth approach recognises the value of cross-sectoral evaluation of human, animal and environmental health questions in an integrated, holistic and transdisciplinary manner to reduce disease impacts and/or mitigate risks. Co-production of knowledge is also widely advocated to improve the quality and acceptability of decision-making across sectors and may be particularly important when it comes to zoonoses. This paper brings together OneHealth and knowledge co-production and reflects on lessons learned for future OneHealth co-production processes by describing a process implemented to understand spill-over and identify disease control and mitigation strategies for a zoonotic disease in Southern India (Kyasanur Forest Disease). The co-production process aimed to develop a joint decision-support tool with stakeholders, and we complemented our approach with a simple retrospective theory of change on researcher expectations of the system-level outcomes of the co-production process. Our results highlight that while co-production in OneHealth is a difficult and resource intensive process, requiring regular iterative adjustments and flexibility, the beneficial outcomes justify its adoption. A key future aim should be to improve and evaluate the degree of inter-sectoral collaboration required to achieve the aims of OneHealth. We conclude by providing guidelines based on our experience to help funders and decision-makers support future co-production processes

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    Publisher Copyright: © 2021, The Author(s).Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.Peer reviewe

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    PHYTOCHEMICAL AND PHARMACOLOGICAL SCREENING OF MALLOTUS PHILIPPENSIS AGAINST CCL4- AND ATT-INDUCED HEPATOTOXICITY IN RATS

    No full text
    Objective: Mallotus philippensis (Mp) is locally known as kamala and is a large woody multipurpose medicinal tree belonging to the family of Euphorbiaceae. Mp possess a wide variety of activities such as skin problem, bronchitis, antifungal, worm infestation (tapeworm) eye disease, cancer, diabetes, and diarrhea. Hence, the present study was intended to evaluate methanolic fruits extract of Mp for hepatoprotective activities. Methods: The hepatoprotective activity was studied by CCl4 at the dose of 1 ml/kg of body weight in liquid olive oil in the ratio of 1:1 and ATT (isoniazid − 7.5 mg/kg, rifampicin − 10 mg/kg, and pyrazinamide − 35 mg/kg b.w.) induced models. Acute toxicity study and preliminary phytochemical screening were also studied to evaluate the toxicity. Results: No toxicity profile was observed in rats after oral administration of the methanolic fruits extract at the dose of 2 g/kg body weight. The different dose of 300 mg/kg and 500 mg/kg administered with the extract of Mp. There was a significant (p<0.001) reduction in biochemical parameters with respect to control. Phytochemical screening of the fruits extract revealed the presence of tannins, alkaloids, flavonoids and saponins, and terpenoids. Conclusion: It can be concluded that the hepatoprotective activity elucidated by Mallotus philippensis could be mainly due to the presences of high-value class of compound like the phenolic group as the major content in the plant

    Membrane-bound toll-like receptors are overexpressed in peripheral blood and synovial fluid mononuclear cells of enthesitis-related arthritis category of juvenile idiopathic arthritis (JIA–ERA) patients and lead to secretion of inflammatory mediators

    No full text
    We examined expression and function of TLRs in enthesitis-related arthritis (ERA) patients. RNA levels of TLR1, TLR3, and TLRs 5–8 were measured in 24 ERA peripheral blood mononuclear cells (PBMC), 18 synovial fluid mononuclear cells (SFMC), and IRAK1, IRAK4, TRIF, TRAF3, and TRAF6 in 18 PBMC and 10 SFMC. IL-6 and IL-8 were measured in supernatants from ERA PBMC (n = 7), SFMC (n = 3), and healthy PBMC (n = 5) cultured with ligands for TLR1/2 (Pam 3-cys), TLR3 (poly I:C), TLR5 (flagellin), and TLR2/6 (zymosan). TLRs 1, 3, 5, and 6 were measured in whole blood (n = 20 ERA, seven healthy) and SFMC (n = 2) by flow cytometry. ERA PBMC compared to healthy PBMC and SFMC compared to ERA PBMC had higher RNA expression of TLR1, TLR3, TLR5, TLR6, IRAK1, IRAK4, TRIF, TRAF3, and TRAF6. TLR7 and TLR8 RNA expression was similar in all study groups. IL-6 and IL-8 levels were higher in stimulated ERA SFMC compared to ERA PBMC and in ERA PBMC compared to control PBMC. TLRs 1, 3, and 6 were also overexpressed at the protein level
    corecore