819 research outputs found
The choice of gadolinium-based contrast agents: a radiologistâs responsibility between pharmaceutical equivalence and bioethical issues
Contrast Agents (CA) are among the most commonly prescribed drugs worldwide, and are used, with a variety of techniques, to increase and intensify the differences between body tissues and to help radiologist make diagnoses in a fast and precise way. In recent decades, advancements in research have resulted in significant improvements in their composition, and have made them safer and better-tolerated by patients; this notwithstanding, although the currently available CA are generally considered to be safe, their use is not completely without risk. The use of CA faces the radiologist with economic considerations, bioethical dilemmas, and possible profiles of professional responsibility. In fact, to achieve the best results in diagnostic imaging, radiologists have to focus on making an appropriate choice of CA, in consideration of efficacy, safety and appropriateness. Moreover, besides by cost/benefit models widely introduced in health management, radiologists are also influenced by their responsibility of appropriate use for the various diagnostic tests and, finally, the choice of best CA to utilise for each individual patient. Thus, the dilemma of choosing between the best and the most cost-effective tests and procedures is occurring more frequently every day. Different variables, such as the patient, examinations, and technology available, can affect the choice of CA in terms of obtaining the highest diagnostic quality, minimum impact on higher-risk patients, and optimisation of used volumes and injection flow
A Bayesian framework for describing and predicting the stochastic demand of home care patients
Home care providers are complex structures which include medical,
paramedical and social services delivered to patients at their domicile. High randomness affects the service delivery, mainly in terms of unplanned changes in
patientsâ conditions, which make the amount of required visits highly uncertain.
Hence, each reliable and robust resource planning should include the estimation of
the future demand for visits from the assisted patients. In this paper, we propose a
Bayesian framework to represent the patientsâ demand evolution along with the time
and to predict it in future periods. Patientsâ demand evolution is described by means
of a generalized linear mixed model, whose posterior densities of parameters are
obtained through Markov chain Monte Carlo simulation. Moreover, prediction of
patientsâ demands is given in terms of their posterior predictive probabilities. In the
literature, the stochastic description of home care patientsâ demand is only marginally addressed and no Bayesian approaches exist to the best of our knowledge.
Results from the application to a relevant real case show the applicability of the
proposed model in the practice and validate the approach, since parameter densities
in accordance to clinical evidences and low prediction errors are found
Outcomes of elective liver surgery worldwide: a global, prospective, multicenter, cross-sectional study
Background:
The outcomes of liver surgery worldwide remain unknown. The true population-based outcomes are likely different to those vastly reported that reflect the activity of highly specialized academic centers. The aim of this study was to measure the true worldwide practice of liver surgery and associated outcomes by recruiting from centers across the globe. The geographic distribution of liver surgery activity and complexity was also evaluated to further understand variations in outcomes.
Methods:
LiverGroup.org was an international, prospective, multicenter, cross-sectional study following the Global Surgery Collaborative Snapshot Research approach with a 3-month prospective, consecutive patient enrollment within JanuaryâDecember 2019. Each patient was followed up for 90 days postoperatively. All patients undergoing liver surgery at their respective centers were eligible for study inclusion. Basic demographics, patient and operation characteristics were collected. Morbidity was recorded according to the ClavienâDindo Classification of Surgical Complications. Country-based and hospital-based data were collected, including the Human Development Index (HDI). (NCT03768141).
Results:
A total of 2159 patients were included from six continents. Surgery was performed for cancer in 1785 (83%) patients. Of all patients, 912 (42%) experienced a postoperative complication of any severity, while the major complication rate was 16% (341/2159). The overall 90-day mortality rate after liver surgery was 3.8% (82/2,159). The overall failure to rescue rate was 11% (82/ 722) ranging from 5 to 35% among the higher and lower HDI groups, respectively.
Conclusions:
This is the first to our knowledge global surgery study specifically designed and conducted for specialized liver surgery. The authors identified failure to rescue as a significant potentially modifiable factor for mortality after liver surgery, mostly related to lower Human Development Index countries. Members of the LiverGroup.org network could now work together to develop quality improvement collaboratives
Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study
Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28â2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65â3·22], p\textless0·0001), American Society of Anesthesiologists grades 3â5 versus grades 1â2 (2·35 [1·57â3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01â2·39], p=0·046), emergency versus elective surgery (1·67 [1·06â2·63], p=0·026), and major versus minor surgery (1·52 [1·01â2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic
This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
A ``Density-Based'' Algorithm for Cluster Analysis Using Species Sampling Gaussian Mixture Models
We propose a new model for cluster analysis in a Bayesian nonparametric framework. Our model combines two ingredients, species sampling mixture models of Gaussian distributions on one hand, and a deterministic clustering procedure (DBSCAN) on the other. Here, two observations from the underlying species sampling mixture model share the same cluster if the distance between the densities corresponding to their latent parameters is smaller than a threshold; this yields a random partition which is coarser than the one induced by the species sampling mixture. Since this procedure depends on the value of the threshold, we suggest a strategy to fix it. In addition, we discuss implementation and applications of the model; comparison with more standard clustering algorithms will be given as well. Supplementary materials for the article are available online
A blocked Gibbs sampler for NGG-mixture models via a priori truncation.
We define a new class of random probability measures, approximating the well-known normalized generalized gamma (NGG) process. Our new process is defined from the representation of NGG processes as discrete measures where the weights are obtained by normalization of the jumps of Poisson processes and the support consists of independent identically distributed location points, however considering only jumps larger than a threshold TeX. Therefore, the number of jumps of the new process, called TeX-NGG process, is a.s. finite. A prior distribution for TeX can be elicited. We assume such a process as the mixing measure in a mixture model for density and cluster estimation, and build an efficient Gibbs sampler scheme to simulate from the posterior. Finally, we discuss applications and performance of the model to two popular datasets, as well as comparison with competitor algorithms, the slice sampler and a posteriori truncation
- âŠ