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Abstract

Estimation of uncertain future patients’ demands is a key factor for appropriately

planning human and material resources in health care facilities, where unplanned demand

variations may deteriorate the quality of schedules and, consequently, of the provided

service. This issue is even more important for health services provided outside hospitals,

e.g., for home care services, where patients are assisted for a longer period and additional

planning decisions related to service delivery in the territory must be taken. With the

goal of helping home care management to take robust decisions, in this paper we propose

a Bayesian model for estimating and predicting both the demand for care and the history

of health conditions for patients in the charge of a home care service. In particular, we

jointly model the temporal evolution of patients’ care profile and the weekly number of

visits required to nurses, and use a Markov chain Monte Carlo algorithm to compute

posterior inference and prediction. The model is applied to data of one of the largest

Italian home care providers, obtaining small prediction errors.

Keywords: Uncertain patients’ demands; Home Care; Bayesian model; Multi-state pro-

cess; Sojourn times, Random-effects model.

1 Introduction

A common feature in planning service delivery in health care facilities is the high uncertainty

related to patients’ demands. Typically, the number of assisted patients and their demand

for care are unknown, and the service delivery must necessarily be dimensioned and planned

taking this uncertainty into account. On the other hand, neglecting randomness may have a

significant negative impact on the quality and feasibility of the plans, and consequently on

the quality of the provided service.

This uncertainty is even more relevant for health services provided outside hospitals, where

additional issues arise. For instance, in emergency vehicle location problems, uncertainty can
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also be accounted for the availability of ambulances. In Home Care (HC) services, where

patients are assisted for a usually longer period than in other facilities and additional planning

choices related to service delivery in the territory are required, the impact of random demands

is relevant. In particular, when continuity of care is pursued, the assignment of nurses to

patients has an impact for a long period (see [1]), and accurate estimations of future patients’

demands are fundamental for taking robust nurse-to-patient assignment decisions.

Specifically, HC refers to nursing, medical and social services provided to patients at

their own domicile, without the necessity of bringing them to hospitals or nursing homes.

Health services provided at home are usually less expensive (hospitalization costs are avoided)

and improve patients’ clinical, social and psychological conditions (they are cared at home

in their familiar context). HC is a relevant sector of the health care domain in Western

countries, and it is continuously growing because of the aging of population, the increase in

chronic pathologies, the introduction of innovative technologies, and the continuous pressure

of governments to contain health care costs. Many resources are involved in delivering HC

services in the territory, including nurses, other types of operators, support staff, and also

material resources. Appropriate resource planning is thus fundamental for avoiding process

inefficiencies, delays, and overloaded operators. In addition, many random events may affect

the service delivery and mine the feasibility of plans; see [1, 2, 3, 4]. As mentioned above,

the most relevant randomness sources are patients’ health conditions, which may determine a

different demand for visits than the planned one, as reported in [5]. Hence, reliable estimation

tools of future demands for visits required by the patients in the charge represent useful

instruments to increase the quality of HC planning and service.

In particular, we are interested in predicting the future number of nurse visits (N) and the

Care Profile (CP) of all patients. CP is a categorical variable usually adopted to summarize

and represent the patient’s health conditions and requirements, which is periodically assessed

by a multidisciplinary health team composed by nurses, physicians, and other professional

operators. Usually, a revision occurs every month, but the CP can be reassigned in advance

in case of sudden variations in patient’s conditions. Time is usually divided into discrete

slots (e.g., the week or the day), and we are interested in estimating N and CP at each future

slot. Here we focus on nurse visits because nurses manage the care pathway of patients and

provide the largest number of visits to them.

In this paper, we apply the Bayesian approach to provide estimates, which allows a

statistical analysis from a predictive point of view. It is particular useful for HC decision

makers who can exploit the entire predictive distribution of each patient’s demand and, thus,

easily compute the predictive distribution of each nurse’s workload and get the predictive

probability that, in a future week, a nurse’s workload exceeds the weekly nurse’s capacity
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(i.e., the working time without incurring overtime). We have already addressed this subject

in [6], using a regression model with random effects for the number of nurse visits N at each

time slot, i.e., for a univariate response, whereas the patient’s CP was considered as a fixed

covariate. Here, we significantly improve the model considering a bivariate response that

includes both nurse visits N and care profile CP of the patients at each time slot. Indeed,

we model N given CP as a generalized linear model with fixed and random effects on one

hand, and the CP transition process by means of a multi-state process with transitions among

visited states governed by a homogeneous Markov chain on the other. The model is applied

to a dataset from one of the largest Italian public HC provider. Through a MCMC scheme,

we compute posterior inference for all model parameters, and predictive distributions. The

goodness-of-fit is also checked.

In the literature, multi-state models represent a useful approach for analyzing categorical

longitudinal data, in particular for medical applications, where stages or levels of a disease

can be easily represented by the states in the model. They have been used in a wide range

of medical applications: see, for instance, [7] (breast cancer), [8] (bronchiolitis obliterans

syndrome in lung transplant), [9] (post-heart-transplant cardiac allograft vasculopathy), [10]

(Alzheimer’s disease), [11] (papilloma virus infection) and [12] (review of frequentist mod-

elling approaches for multi-state models). See also [13] as a reference textbook, and [14] for

the description of an R package, called msm, to deal with multi-state processes under the

frequentist approach.

More recently, multi-state models have been proved fruitful also in the context of resource

management for health care facilities. For instance, Blanco [15] proposes a multi-state Markov

model to estimate the cost of care provisioning to elderly people in order to help governments

in efficiently and effectively allocating resources, whereas Gardiner et al. [16] adopt a Markov

model to estimate the transition probabilities between health statuses to asses total treatment

costs for cancer patients. On the other hand, for a HC dataset similar to the one we analyze

here, Lanzarone et al. [5] proposes a frequentist approach based on Markov chains associated

with a cost probability density function for the number of required visits in each state.

Multi-state processes have been discussed in the Bayesian literature too. Hui et al. [17]

present Bayesian spatial continuous-time multi-state models for the analysis of geographically

referenced event history data; Armero et al. [18] use survival analysis and multi-state models

to assess survival times for lung cancer patients and the evolution of the disease over time.

Other references are [19] and [20]. However, only few papers deal with the Bayesian approach

for health care management purposes and, in the HC context, the only available example is

our previous paper [6] to the best of our knowledge. Hence, besides the specific application

to HC, our aim is to fill this gap and to show the benefits that can derive from applying
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Bayesian approaches in this area.

The remainder of this paper is organized as follows. Section 2 describes the type of data

at hand and shows the structure of the model. Then, Section 3 describes the dataset and

some features of the HC provider supplying the data. In Section 4 we apply the model to the

dataset, discussing in particular posterior inference of model parameters, Bayesian goodness-

of-fit, prediction for a newly admitted patient, and comparison with the univariate model in

[6]. Finally, a discussion and some conclusions are presented in Section 5.

2 Bayesian joint modeling of patient’s demand and CP evo-

lution

The first part of this section roughly describes the type of data at hand, in order to understand

the model we are going to introduce in the second part.

We consider a sequence of time slots (t = 1, . . . , T ) in which several patients (i = 1, . . . , n)

are assisted, and we denote by TL(i) and TU (i) the time slots when patient i enters and exits

the service, respectively. Here, each care pathway is entirely contained in the time window,

i.e., TL(i) ≥ 1 and TU (i) ≤ T for all i. Moreover, we assume that each patient enters and

exit only once during his/her care pathway, i.e., we do not consider cases in which a patient

is temporarily discharged and enters the service again. Data observed for each patient i at

time slot t ∈ {TL(i), . . . , TU (i)} are:

• Number of nurse visits Ni,t to patient i at time slot t (count data).

• Care Profile CPi,t of patient i at time slot t. It is a categorical variable with values in

{1, 2, . . . , R}.

Moreover, we take into account two covariates in the model:

• agei,t: age of patient i at time t, expressed in terms of normalized age as follows:

agei,t =
agepatienti,t − agemean
agemax − agemin

where agepatienti,t is the age (in years) of patient i at time t, agemean, agemin and agemax

are the mean, the minimum and the maximum of ages of patients in the dataset at t = 1,

respectively.

• sexi: gender of patient i, expressed in terms of a binary variable equal to 0 if male, or

1 if female.
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Differently from [6], in this model we consider CPi,t as a response to be modeled and

estimated together with Ni,t. Therefore, we jointly model the distribution of {Ni,t,CPi,t}i,t.
In particular, we assume that, for each patient i, the transitions between visited CPs are

regulated by a multi-state Markov Chain, whereas the holding time (alternatively, sojourn

time) in a visited CP state depends on all the CP history up to that time. To be more

precise, let ηi = (ηi,1, ηi,2, . . . , ηi,J(i)) be the sequence of all the J(i) different categories

assumed by the CP history of patient i during the time window. Let also Hi,j be the number

of times the CP of patient i remains in his/her j-th visited state ηi,j . In this way each

patient is characterized by the sequence of visited care profiles ηi = (ηi,1, . . . , ηi,J(i)), the

sequence of holding times Hi = (Hi,1, . . . ,Hi,J(i)), and the sequence of nurse visits Ni =

(Ni,TL(i), Ni,TL(i)+1, . . . , Ni,TU (i)). Observe that the number of components in ηi and Hi) is

different from that in Ni. The CP trajectory {CPi,t, t = TL(i), . . . , TU (i)} can be represented

by two vectors ηi and Hi, such that we model L({CPi,t}t) by assigning L({ηi,j , Hi,j}j). For

each patient i = 1, . . . , n, we assume

L(ηi,Hi) = L(ηi,1)L(Hi,1|ηi,1)L(ηi,2|ηi,1)L(Hi,2|Hi,1, ηi,2) . . .L(ηi,J |ηi,J−1)

× L(Hi,J |Hi,1, . . . ,Hi,J−1, ηi,J).

(1)

We also assume conditional independence among patients. The contribution to the likeli-

hood of each patient i is (conditionally to covariates and parameters, not explicitly reported

here) as follows:

L({CPi,t}t, {Ni,t}t) = L({CPi,t}t)× L({Ni,t}t|{CPi,t}t)(2)

= L({CPi,t}t)×
∏
t

L(Ni,t|CPi,t)

where L({CPi,t}t) is the law of the process described in (1) and L(Ni,t|CPi,t) is a generalized

linear mixed effects model (GLMM). In particular, we model the number of visits Ni,t for

patient i at time t as a Poisson distribution with an average rate which depends on the current

CPi,t and covariates, i.e.,

(3) Ni,t|CPi,t = r ∼ Pois(λre
x′i,tγ), r = 1, 2, . . . , R, TL(i) ≤ t ≤ TU (i)

where xi,t is the covariate vector of patient i at time t (agei,t and sexi) and γ = (γ1, γ2) is

the corresponding regression parameter vector.

As far as the law of the CP trajectories is concerned, we assume that the holding

times Hi,js are distributed according to a Negative Binomial distribution on {1, 2, . . .}, i.e.,

NB (z, q):

Hi,j |ηi,j , Hi,j−1, . . . ,Hi,1 ∼ NB (z[ηi,j ], qi,j) 1 ≤ j ≤ J(i).(4)
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Of course, for j = 1 the formula above is meant without the conditioning event. Here NB(z, q)

denotes the Negative Binomial distribution with probability of “success” q and “number of

successes” z, and its expectation is 1 + r(1 − q)/q. The qi,js are modelled through a logit

regression of the form

logit(qi,1) = log
qi,1

1− qi,1
= β1[ηi,1]

logit(qi,j) = log
qi,j

1− qi,j
= β1[ηi,j ] + β2(Hi,1 + . . .+Hi,j−1) 1 < j ≤ J(i).

(5)

Note that, because of (5), we are assuming that qi,j depends on the current value of patient’s

CP, as well as on the time the patient has spent in the service from admission to the last CP

change (i.e., the change from ηi,j−1 to ηi,j). Parameters β1,r = β1[ηi,j = r] and zr = z[ηi,j = r]

describe the random effects of the patient as a function of the current ηi,j , λr represents

the random effect (health status) of a patient with CP= r, whereas β2, γ1, γ2 are fixed-

effects parameters. Moreover, we have assumed that holding times of each patient are not

independent, but depend on all the previous ones.

As far as modelling of ηi is concerned, the visited CPs are described by a (conditionally)

homogeneous Markov chain, with states {1, . . . , R + 1}. States from 1 to R correspond to

CP categories, whereas the last state R + 1 represents an exit state from the service (if the

patient dies, or leaves the service for any different reason). Obviously, R+ 1 is an absorbing

state. By P = [Pr,s] we denote a (R + 1) × (R + 1) matrix, and Pr,s is the probability that

the visited care profile (at any time) moves from state r to s. We assume the initial state ηi,1

to have a discrete (categorical) distribution with weights (π1, π2, . . . , πR, πR+1) where πr ≥ 0

∀r and
∑R+1

r=1 πr = 1.

As far as the prior is concerned, all parameters P ,γ1, γ2, β2, (λ1, . . . , λR), (β1,1, . . .,

β1,R), (z1, . . . , zR) are assumed a priori (conditionally) independent. In particular, we assume

the rows of the transition matrix P to be independent, being each row

(6) (Pr,1, . . . , Pr,R+1) ∼ Dirichlet(a1, . . . , aR+1) r = 1, . . . , R,

where Dirichlet(·) denotes the (absolute continuous) Dirichlet distribution on SR = {(x1
, . . . , xR ) : xj ∈ [0, 1] ∀j, 0 < x1 + . . . + xR < 1}. Self transitions are not allowed

(Pr,s = 0, r = s) as this agrees with the definition of holding times between state changes,

whereas PR+1,R+1 = 1 almost surely. For the rest of the parameters, we make standard as-

sumptions: the marginal priors for the random effects are assumed exchangeable, according

to the Bayesian hierarchal approach, and the fixed effects have weakly informative marginal

priors, i.e., in this case, Gaussian distributions, centered at 0, with large variance. Specifically,
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we assume:

log(λr)|µλ, σ2λ
iid∼ N(µλ, σ

2
λ), r = 1, 2, . . . , R,

µλ ∼ N(0, 100), σλ ∼ U(0, 10), µλ, σλ independent,
(7)

β1,r|σ2β1
iid∼ N (0, σ2β1), r = 1, . . . , R, σβ1 ∼ U(0, 10)(8)

zr
iid∼ Gamma(2, 2), r = 1, . . . , R(9)

γ1, γ2, β2
iid∼ N (0, 1000).(10)

Marginal uniform priors for the standard deviation parameters as in (7) or (8) represent a

reasonable choice in Bayesian hierarchical models, when a weakly informative prior is used, as

in our case (see [21]). Further details on the hyperparameters above will be given in Section 4.

All inference is based on the posterior distribution of θ = (γ1, γ2, β2, µλ, σ
2
λ, (λ1, . . . , λR),

(Pr,1, . . . , Pr,R), (β1,1, . . ., β1,R), (z1, . . . , zR)), given N ,CP and the covariates:

π(θ|N ,CP, covariate) ∝ π(θ)Lik(θ),

where the joint likelihood Lik(θ) can be recovered from (1)-(2) as

Lik(θ) =
n∏
i=1

{
L(ηi,1)L(Hi,1|ηi,1)

×
TU(i)∏
t=TL(i)

L(Ni,t|CPi,t)

J(i)∏
j=2

L(Hi,j |ηi,j , Hi,j−1, . . . ,Hi,1)L(ηi,j |ηi,j−1)
}
.

Of course, we resort to Markov Chain Monte Carlo (MCMC) algorithms to compute the

posterior distribution.

In this study, our final goal is to predict the demand for visits at future time slots, given

covariates and data via predictive distributions. This is very important for HC decision

makers, who are interested in planning the service and assigning nurses to patient over a

future planning horizon to improve service efficiency. If we observe the care pathway of a

patient until time t, {CP∗(τ), N∗(τ), TL ≤ τ ≤ t}, then his/her predictive distribution is:

L (N∗(t+ 1),CP∗(t+ 1)|x∗,N ,CP) =(11)

=

∫
L (N∗(t+ 1)|CP∗(t+ 1))L (CP∗(t+ 1)|{CP∗},θ)π (dθ|N ,CP,x∗)

where x∗ is the covariate vector, and N∗(t+ 1) and CP∗(t+ 1) are the number of nurse visits

and the CP of the patient at time t+ 1, respectively. Evaluation of (11) is usually achieved

through the MCMC strategy. In particular, in this work, differently from Argiento et al. [6],

there is no need to condition on an hypothetical “future” trajectory of the care profile path,

since here this is part of our response variable and can be predicted according to the model.
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Furthermore, we are able to compute also the posterior predictive distribution for a newly

admitted patient; in this case, differently for (11), no information is available from previous

time slots. Let us denote by i∗ the new patient with covariate vector x∗ and care profile

trajectory CPi∗ ; then the predictive distribution of i∗ is computed integrating the conditional

joint distribution of Ni∗ = (Ni∗,TL(i∗) , . . . , Ni∗,TU(i∗)) and CPi∗ = (CPi∗,TL(i∗) , . . . ,CPi∗,TU(i∗))

as in (3)-(5) with covariate x∗, with respect to the posterior distribution of θ.

3 Exploratory analysis of the HC dataset

We consider data from one of the largest Italian public Home Care providers; data from this

provider have already been analyzed according to frequentist [5] and Bayesian approaches [6].

This provider operates in the north of Italy, covering a region of about 800 km2, with about

1000 patients assisted at the same time [2, 3]. Moreover, the human resource organization

and the patient classification adopted by this provider can be considered general and common

to several other HC providers as underlined by Matta et al. [1], so that it is representative

of a general class of providers. The provider is divided into three divisions, and the analysis

refers to the largest one.

Patients assisted by this HC provider are mainly clustered into two groups: palliative and

non-palliative patients. Non-palliative patients are further divided into two groups, denoted

by extemporary care (with very low frequency of visits) and integrated care (with higher

frequency). Each class is then divided into CPs based on the care intensity required by the

patients. CPs related to palliative care refer to a homogeneous class of terminal patients

whose pathology is in a terminal state. On the other hand, for non–palliative care, each CP

includes a wide range of patients in terms of age, pathology and social context; however,

patients belonging to the same CP are characterized by similar therapeutic projects with

similar levels of demands. With respect to the classification adopted by the HC provider,

we have regrouped very similar CPs, thus reducing the number to 9, as in Table 1. As

mentioned before, we have added one additional state (CP=10) for patients exited from the

service, which is absorbing.

The time slot here is the week. In fact, for the provider analyzed here, as for many others,

the assignment phase of the planning process is carried out over a weekly basis.

3.1 Dataset description

We started the analysis considering the same dataset as in [5]. The time horizon is pretty

wide, i.e., 252 weeks long, from January 2004 to March 2008. We filtered the dataset, consid-

ering only patients in the provider’s largest division who entered and exited the service only
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Table 1: Classification of CPs and associated patients and pathologies. CPs within each

category are listed in increasing order of complexity and expected demand for visits.

Types of care Associated pathologies CP

Extemporary

Care

Heterogeneous class of patients assisted by

HC even without a specific pathology, who

require generic nursing and medical

assistance: patients with the same CP are

characterised by similar demands with low

frequency of visits

1

9

Integrated Care

Heterogeneous class of non-palliative

patients with different pathologies: patients

with the same CP are characterised by

similar therapeutic projects with high

frequency of visits

8

7

2

3

4

5

Palliative Care Homogeneous class of terminal patients gen-

erally affected by oncological diseases

6

once within the observed period without any interruption of the service (e.g., hospitaliza-

tion periods with an interruption of the HC assistance), and whose care pathway is entirely

contained in the whole time window.

In this way, we got a large dataset consisting in n =2358 patients with an overall number

of (bivariate) observations between TL(i) and TU (i) equal to 34390. The dataset includes

1006 men (43%) and 1352 women (57%). The age (at the entrance in the service) ranges

from a minimum of 1 year to a maximum of 101 years, while the empirical mean and standard

deviation are 73.74 and 14.43 years; empirical means and standard deviations for male and

female patients are 70.60, 14.53, and 76.08, 13.90, respectively. The boxplots of age grouped

by gender, not included here, give evidence that age and gender are not independent. The

overall average number of nurse visits (i.e., the ratio between 42259, the sum of all numbers of

weekly visits, and 34390 observations) is equal to 1.23. To give insight to these data, the total

number of observations between TL(i) and TU (i) and the average number of visits, grouped

by CP, age and gender, are reported in Table 2 and Table 3, respectively. Moreover, sample

histograms of the holding times Hi,j grouped by ηi,j = r (with r = 1, . . . , 9) are depicted in

Figure 1. From the figure we see that most of the histograms seem heavily skewed right.

Finally, we summarize the multi-state data (ηij)i,j as a frequency table of pairs of con-

secutive states (Table 4): this counts over all individuals, for each state r and s, the number
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Table 2: Number of observations and average number of visits grouped by CP.

group of HC Extemporary Care Integrated Care Palliative Care

CP = 1 CP = 9 CP = 8 CP = 7 CP = 2 CP = 3 CP = 4 CP = 5 CP = 6

total no. of obs 9606 963 776 7061 1032 2563 2631 3706 6052

aver. no. of visits 0.45 0.89 0.37 0.83 1.38 1.37 1.19 2.36 2.34

Table 3: Number of observations and average number of visits grouped by age and gender.

men women

age no. of average no. of average

obs no. of visits obs no. of visits

≤ 50 949 1.01 600 1.55

(50, 60] 1246 1.12 1203 1.07

(60, 70] 2803 1.22 2683 1.65

(70, 80] 4047 1.27 5925 1.29

(80, 90] 4361 0.97 7571 1.12

> 90 781 0.81 2217 1.65

of times the care profile moved from state r (at any time t) to state s (at time t+ 1).

4 Bayesian inference for the HC dataset

As we mentioned in Section 2, a weakly informative prior for hierarchical standard deviation

parameters (here σλ and σβ1) is the uniform on a bounded large interval (0, σmax). Here

we report the inference when σmax = 10, but we checked that we got the same posterior

distribution as when σmax = 100. In both cases, the marginal posterior distributions of σλ

and σβ1 are concentrated on values much smaller that 10. On the other hand, we set the

marginal prior expectation E(zr) for the random effect zr equal to 1, since this corresponds to

the Geometric distribution for the holding times, which has the memoryless property, as it is

well known. The prior variance Var(zr) = 0.5 corresponds to a prior standard deviation equal

to 1/
√

2 (neither too small nor too large). In addition, under no further prior information,

we set the hyperparameters of the distribution of the initial CP state πr = 1/(R+ 1) and all

ar in (6) equal to 1.

We analyze the posterior distribution of the parameter vectors via point estimates and

credible intervals. Moreover, Bayesian prediction for patients already in charge and for a
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Figure 1: Histograms of holding times grouped by care profile η.

newly admitted patient are presented here. The posterior inference of the model parameters

is reported in Section 4.1, predictive goodness-of-fit in Section 4.2, predictions for newly ad-

mitted patients and the comparison with model in [6] are shown in Section 4.3 and Section 4.4,

respectively.

4.1 Bayesian inference of the parameters

In order to compute the Bayesian estimates, the model was implemented in Jags [22], with

the support of R [23], with chains consisting of 255000 iterations with a burn-in of 5000 and a
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Table 4: Number of observed transitions between CP states.

@
@
@
@

r

s
1 2 3 4 5 6 7 8 9 10

1 0 4 18 10 12 16 13 0 2 393

2 5 0 6 3 4 5 53 3 0 79

3 12 31 0 30 20 3 160 1 1 170

4 8 32 93 0 22 6 133 2 0 132

5 3 15 97 125 0 11 101 0 1 194

6 2 0 0 0 1 0 0 0 0 746

7 42 12 35 15 13 10 0 15 0 575

8 4 0 2 0 2 1 2 0 0 15

9 1 0 0 1 0 1 0 0 0 54

thinning of 50 iterations, yielding a final sample size of 5000 iterations. Standard convergence

diagnostics in the CODA package (see [24]) were checked. Moreover, we monitored traceplots,

autocorrelations, and bivariate scatterplots for all the parameters, indicating that the MCMC

algorithm converged. Code is available from the authors upon request.

To give an indication of the mixing of the chain, Figure 2 displays traceplots of the β1,r

parameters. Figure 3 displays the 95% posterior credibility intervals (with posterior medians)

of random-effects parameters zr, β1,r and log(λr), r = 1, . . . , 9. Its clear from Figure 3 that

the random-effects parameters are significantly different with respect to the care profile. In

particular, we see that the holding times Hi,j strongly depend on patient’s CP through zr

and β1,r. Moreover, from the model we have assumed we expect that the larger β1,r is,

the smaller E(Hij) is; this is exactly the feature that we can see from the figure, where the

highest CIs for β1,r are obtained for r =2,3,4,5, which are exactly the groups corresponding to

smaller sample means. Furthermore, we remark that larger credibility intervals in Figure 3 are

generally obtained for profiles with a smaller number of observations, as, for instance, when

CP= 8 and CP= 9. Despite we have already displayed posterior CIs for the zr parameters,

in Figure 4 we display the marginal posterior distributions, together with the marginal prior

(gamma(2,2) distribution). It is apparent that the posterior marginal distributions of the zrs

are pretty different, and also different from the prior. Therefore, it has been reasonable to

model z as a random effect parameters (i.e. considering 9 different parameters z1, . . . , z9).

Note that the posterior density of z1 and z6 has significantly flatter tails. We also report

posterior means and standard deviations of the patients health statuses λ1, . . . , λ9 in the
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Figure 2: Traceplots of MCMC sampled values of β1,r, for r = 1, . . . , 9.
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Figure 4: Marginal posterior distributions of zr, r = 1, . . . , 9; gamma(2,2) is the marginal

prior of any zr.

original scale (see Table 5). Once again, by looking at the values in the table, it is clear

that our estimates reflect the knowledge inherent to the data itself. In fact, since the largest

value of the posterior means of the λr parameters is obtained by the palliative group (λ6),

these patients manifest the worst health status and require the highest number of visits. In

contrast, extemporary care patients correspond to the smallest number of visits and the best

health status, while integrated care patients have intermediate needs.

As far as fixed effects are considered, Table 6 reports posterior quantiles of γ1, γ2 and β2.

The marginal posterior distributions of γ1 and γ2 are mostly constrained on positive values,

yielding that the demand of visits increases with age and it is larger for female patients (the

Table 5: Posterior means and standard deviations of λr, r = 1, . . . , 9; the estimates are listed

according the increasing order within each category as reported in Table 1).

group of HC Extemporary Care Integrated Care Palliative Care

λ1 λ9 λ8 λ7 λ2 λ3 λ4 λ5 λ6

Mean 0.378 0.868 0.331 0.714 1.189 1.185 1.047 2.129 2.203

sd 0.006 0.030 0.020 0.011 0.033 0.021 0.020 .027 0.022
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Table 6: Posterior quantiles of the fixed-effects parameters.

2.5% 50% 97.5%

(age) γ1 0.906 0.980 1.057

(gender) γ2 0.098 0.119 0.138

(past time) β2 -0.012 -0.010 -0.008

Table 7: Posterior means of each element in the transition probability matrix P.

@
@
@
@

r

s
1 2 3 4 5 6 7 8 9 10

1 0.0000 0.0105 0.0398 0.0230 0.0274 0.0356 0.0293 0.0021 0.0063 0.8261

2 0.0359 0.0000 0.0417 0.0237 0.0298 0.0357 0.3231 0.0241 0.0059 0.4802

3 0.0300 0.0734 0.0000 0.0707 0.0478 0.0091 0.3682 0.0046 0.0046 0.3916

4 0.0207 0.0758 0.2149 0.0000 0.0525 0.0159 0.3065 0.0068 0.0024 0.3046

5 0.0073 0.0288 0.1765 0.2268 0.0000 0.0215 0.1835 0.0018 0.0036 0.3503

6 0.0039 0.0013 0.0013 0.0013 0.0026 0.0000 0.0013 0.0013 0.0013 0.9855

7 0.0592 0.0180 0.0495 0.0221 0.0192 0.0151 0.0000 0.0220 0.0014 0.7936

8 0.1429 0.0283 0.0863 0.0287 0.0860 0.0583 0.0859 0.0000 0.0282 0.4554

9 0.0302 0.0152 0.0151 0.0304 0.0154 0.0303 0.0154 0.0152 0.0000 0.8328

women are 57% of our dataset). On the other hand β2 is a posteriori constrained on negative

values i.e., the holding time at j increases when the summation of all holding times until

(j − 1) decreases.

Now, let us make some comments on the Bayesian estimates of the transition probability

matrix P . Table 7 reports posterior means of all Pr,s. It shows that palliative patients

(CP= 6) leave the service with higher probability than non palliative patients, in agreement

with empirical evidence (see Table 4); of course, estimates of Pr,r, r = 1, . . . , 9 are zero, since

they are zero a priori. Except for the last column, representing probabilities of exiting the

study, the transition probability estimates do not seem to strongly depend on CPs. Moreover,

extemporary patients (CP= 1, 9) exit the service with high estimated probabilities. To gain

additional insight into the transition matrix, 95% credibility intervals for each row of the

transition matrix P are reported in nine panels in Figure 5. It is clear that all palliative

patients will leave the service sooner or later, since the posterior variance is quite small and

the mean is fairly high (0.99); indeed our dataset shows very strong empirical evidence that

palliative patients died (if they changed CP). Once again, larger variability in the estimates
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Figure 5: 95% posterior CIs for (Pr,s, s = 1, . . . , 10) , r = 1, . . . , 9. The label on the y-axis on

each panel identifies r.

holds for CP=8, and for CP=9 to a smaller extent, since these groups are smaller. As regards

the rest of integrated care CPs (R =7,2,3,4,5), the figure shows that there is a strong tendency

to move from a visited CP to the next one.

4.2 Bayesian goodness of fit

Some graphical and numerical tools for assessing the goodness of fit of the Bayesian model

considered are presented here. In this section we adopt a predictive point of view, focusing

our attention on patients who are in charge at a certain time t and predicting their number
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Table 8: MAE of the number of visits at successive weeks.

t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7 t+ 8

MAE99 1.20 1.13 1.12 1.11 1.08 1.06 1.06 1.05

MAE149 1.01 1.05 1.06 0.95 0.95 0.94 0.94 0.93

MAE175 1.12 1.12 1.13 1.09 1.10 1.10 1.10 1.08

MAE234 1.00 0.98 1.07 0.97 0.98 0.97 0.95 0.95

.

of nurse visits and care profiles at time t+ 1.

For goodness-of-fit purposes only, we divided the dataset into a training set and a testing

set according to a predictive cross-validation approach. Patients who are in charge of the

provider at week t are in the testing set, whereas all the others are in the training set. We

computed the posterior densities of model parameters again, considering only the training

set as “data”. Then, we computed the predictive distributions as in (11) for patients in the

testing set by means of the posterior of parameter θ obtained under the training set. Finally,

we checked predictions and observed data of the testing sample. This validation procedure

was applied at some of the 252 weeks in the time window. For each of them, we computed

the joint predictive distribution of the number of nurse visits and the care profile for all the

patients in the charge at that week.

As in [6], the accuracy of the prediction for nurse visits was evaluated in terms of the

mean absolute error (MAE), that is

(12) MAEt+1 =

∑mt
i=1 |ni,t+1 − N̂i,t+1|

mt
,

where mt is the number of active patients at week t, ni,t+1 is the observed number of nurse

visits at time t+ 1 and N̂i,t+1 is the Bayesian prediction of the nurse visits for each patients

at week t+ 1. Here, N̂i,t+1 is taken as the mean of the predictive distribution of Ni,t+1. The

lowest is the MAEt+1, the highest is the accuracy of our prediction at time t+1. We computed

MAE as in (12) at four different weeks t = 99, t = 149, t = 175 and t = 234, where the

number of patients in the charge at those weeks are m99 = 158, m149 = 143, m175 = 165 and

m234 = 108, respectively; Table 8 displays our estimates. In order to calibrate the values we

obtain, we also computed the empirical MAE as in (12) substituting the Bayesian prediction

N̂i,t+1 with n∗i,t+1, the sample average of the number of nurse visits for patients in the training

set with care profile equal to CPi,t; these values are 1.29, 1.01, 1.15, 0.88 for week 100, 150,

176, 235, respectively. Hence, comparing values of MAE in the first column in Table 8 to

these above, we conclude that all the values are quite close, so that the model show a rather

good fit to the data.
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To assess the accuracy of the estimates and to check the presence of asymmetric errors

in the predictions at week t + 1, we also plot the differences ni,t+1 − N̂i,t+1 for each patient

in the testing sets. Figure 6 shows small errors, but our predictive estimates are mostly
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Figure 6: Sample histograms of the errors for predictions of nurse visits at t + 1 = 100 (a),

t+ 1 = 150 (b), t+ 1 = 176 (c) and t+ 1 = 235 (d).

overestimating the number of visits effectively administered to the patients.

Now, let us turn our attention to the prediction of the care profile at t + 1 =100, 150,

176 and 235. In this case, since CP is a categorical variable, the Bayesian prediction we

considered is the predictive mode. Table 9 displays Bayesian prediction of the care profile at

week t + 1 for those patients who were in the study at week t. The prediction is displayed

for patients within the three groups of care profile. For example, at week t = 99 we consider
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158 patients, 41 of them with CPs in the extemporary care group, 86 in the integrated care

group and 31 palliative (CP=6). Our prediction at t = 100 yields that 38 patients remain

in the extemporary care group, while the observed frequency is 40, and 3 patients leave the

service (while the observed frequency is 1). Analogously, 46 of the integrated patients are

predicted by our model to remain in the same group although the observed frequency is 77,

while, out of 31 of palliative patients, we expect that 11 of them to remain palliative (the

observed frequency is 28) and 20 to exit the service (the observed frequency is 3). In all,

these predictions seem accurate.

In addition, we have taken into account computation of posterior predictive p-values for

our model, which are among the most popular tools to assess goodness-of-fit in the Bayesian

context; specifically,

p− valuei,t+1 = min(P (Nnew
i,t+1 > ni,t+1|data), P (Nnew

i,t+1 ≤ ni,t+1|data)),

defined in terms of the predictive distribution of Nnew
i,t+1, where Nnew

i,t+1 is the i-th “replicated

data” (see [25], Section 6.3). An extremely small value of the Bayesian p − value indicates

that the data are unlikely under the model. However we do not report here these values, since

they would not give further insight. We would like only mentioning that predictive p−values

of the model seem to be uniformly distributed on to (0, 0.5), which indicates a good fit of our

Bayesian model (for more details, see [26]).

4.3 Bayesian prediction for a newly admitted patient

As a second goal of Bayesian prediction, the interest in this subsection is forecast of the

number of nurse visits required to a new patient just admitted into the service. In particular

we follow the approach described at the end of Section 2, for a new female patient, who is

77 (i.e. the overall sample mean) years old at the first week of the study. We simulated the

whole trajectory of this patient, i.e. Ni∗,t and CPi∗,t t = 1, . . . , TU (i∗). In Figure 7 we display

the posterior predictive probabilities of Ni∗,t and CPi∗,t when t =4, 8 and 12. From the right

column in the figure, we see that low intensity profiles 1,7,8,9 have predictive masses which do

not change over time, while the rest of the predictive masses decreases in time in favor of the

exit state (CP=10). This means that low intensity profile patients have sojourn times larger

that at least 12 weeks, whereas higher intensity profile patients show lower sojourn times.

On the other hand, the predictive distributions of the number of visits do not significantly

change over time.
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Table 9: Comparison between observed and predicted values of CP within the three groups

of home care for all patients in the charge at week t.

t+ 1 = 100, m99 = 158

Extemporary Integrated Palliative Exit

obs pred obs pred obs pred obs pred

obs at t = 99

Extemporary 41 40 38 0 0 0 0 1 3

Integrated 86 1 0 77 46 1 0 7 40

Palliative 31 0 0 0 0 28 11 3 20

t+ 1 = 150, m149 = 143

Extemporary Integrated Palliative Exit

obs pred obs pred obs pred obs pred

obs at t = 149

Extemporary 42 39 41 1 0 0 0 2 1

Integrated 74 0 0 70 48 0 0 4 26

Palliative 27 1 0 0 0 21 16 5 11

t+ 1 = 176, m175 = 165

Extemporary Integrated Palliative Exit

obs pred obs pred obs pred obs pred

obs at t = 175

Extemporary 41 39 39 0 0 0 0 2 2

Integrated 101 0 0 92 60 0 0 9 41

Palliative 23 0 0 0 0 21 12 2 11

t+ 1 = 235, m234 = 108

Extemporary Integrated Palliative Exit

obs pred obs pred obs pred obs pred

obs at t = 234

Extemporary 38 35 38 0 0 0 0 3 0

Integrated 52 1 0 43 46 0 0 8 6

Palliative 18 0 0 0 0 15 17 3 1
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Figure 7: Posterior predictive probabilities of the number of nurse visits and care profile at

some weeks for a new patient.
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4.4 Comparison with the model in Argiento et al. [6]

In this section we aim at making a comparison between the model presented here and that

in Argiento et al. [6]; they both are Bayesian models. Of course, the first difference between

the two is the dimension of the response: in this work, we model jointly visits demand

and evolution of care profile of the patient, while in [6] it is only patient’s demand which is

accounted for by the model, with the assumption that patient’s care profile is known all along

the time window. Therefore the model here allows a higher degree of flexibility. Moreover,

note that in [6] the mean λi,t of the number of visits Ni,t has an autoregression formulation,

while here it depends only on the patient’s current care profile which, however, is a response

variable itself. Further, Argiento et al. [6] considered the age of each patient at the beginning

of the study as a fixed covariate, while here we consider it as a time-varying covariate.

In order to compare goodness-of-fit of the two models, we run the model in [6] with the

same data we analyzed here, and compared values of MAE of nurse visits as in Table 8,

for eight next weeks from t, when, as before, t =99, 149, 175 and 234. Figure 8 displays

comparison among the values of MAEs under the two models. The two lines in all panels are

quite close each other till t + 4, but then the MAEs under the model here are smaller and

seem slightly decreasing in time, whereas the others rapidly increase. This points out that

the present model is fairly efficient on the long-term prediction.

5 Discussion

In this paper, we have analyzed health profile and demand for home care patients in Italy. We

have proposed a bivariate Bayesian model to represent the evolution in (discrete) time of the

number of nurse visits and care profile of patients in the service. We have computed estimates

of the parameters, as well as prediction of either a new patient, or patients already in the

charge. Our final aim is helping the HC decision makers to organize nurses workload through

a whole probability distribution, so that they could be able to compute the (predictive)

probability that, in a future week, nurses do not have to work overtime (consequently yielding

higher costs) to fullfill patients’ requirements.

The model formulation we have presented here is very general and extremely flexible.

Unlike the previous work [6], the patients care profile is not a fixed covariate, so that this

new model, being bivariate, is fairly flexible, though more complex.

Of course, different modelizations could have been assumed. For instance, one could

wonder why we have assumed the negative binomial to model the holding times (see (4)).

Indeed, we tried different distributions, like the geometric and the Poisson distributions.

However, as it is well known, conditionally on its parameter, the geometric distribution has
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Figure 8: Comparison between MAE of the number of nurse visits under our model (solid

line) and that in [6] (dashed) at t = 99 (a), t = 149 (b), t = 175 (c) and t = 234 (d).

the memoryless property, while the Poisson does not account for overdispersion, or more

generally for different mean and variance. Both assumptions were not reasonable for our

dataset. As far as modelization of logit(qi,j) is concerned, instead of (5), we tried different

alternatives: (i) one more random effect parameter β2[ηi,j ] in place of the fixed effect β2,

(ii) modelling the dependence through time only via Hi,j−1, or (iii) only via the sum of

the previous holding times spent in the care profile equals to ηi,j . By the way, assumption

(i) is equivalent to assume that the bivariate discrete time process of the holding times and

the care profile states is a semi-Markov process (see [27]). We also considered modelling the

parameters zi,j in the negative binomial distribution of {Hi,j}j as a regression model on the
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log-scale (iv) with a random intercept and a fixed effect term taking into account the sum

of the previous holding times spent in the care profile equals to ηi,j , or (v) with a random

intercept and two fixed-effects parameters for age at time t and gender (of course removing

these covariates from the distribution of Ni,t). Summing up, none of the alternatives produced

better goodness-of-fit nor gave new insight to the corresponding parameterization.

In conclusion, the main advantage of this model, compared to the other Bayesian paper

of ours [6], is the opportunity to handle a longer time horizon, since the estimates remain

good for a longer number of time slots. This is particularly useful in presence of middle- and

long-term decisions, e.g., the nurse-to-patient assignment under continuity of care. Such a

result justifies the higher complexity of this model, introduced to take into account the care

profile CP as a response variable.
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