240 research outputs found

    Investigación para la extensión del Fasor de la potencia aparente de desequilibrio a la potencia aparente de distorsión. Nuevo método para la compensación de la potencia reactiva y potencias de desequilibrio en sistemas trifásicos sinusoidales desequilibrados

    Full text link
    Tesis por compendio[ES] El campo de la ciencia donde se encuadra la presente tesis doctoral, es un campo muy antiguo y muy estudiado. La primera experiencia conocida en transmisión de energía eléctrica es atribuida a H. Fontaine en 1873 en la Exposición de Viena. Desde entonces se han desarrollado multitud de teorías sobre la potencia eléctrica, y aunque parezca poco creíble, hoy en día todavía no se ha establecido una teoría consensuada por toda la comunidad científica. No obstante, sí que hay una norma establecida que permite la construcción de los aparatos de medida bajo unos mínimos consensuados. Esta norma es la IEEE Std. 1459-2010. En el año 2015, el Dr. Pedro Ángel Blasco Espinosa, presentó su tesis doctoral cuyo título es: "Formulación de la potencia de desequilibrio. Aplicación a redes eléctricas desequilibradas sinusoidales", en la cual se formulaba fasorialmente la potencia de desequilibrio, y conjuntamente con la potencia aparente de secuencia positiva, obtenía la potencia total suministrada por la red en un punto de la misma. Esta potencia coincidía con la obtenida con la norma reseñada y con la teoría de Buchholz (1922). No obstante, dejaba fuera la potencia de distorsión. Esta tesis tiene dos objetivos diferenciados y complementarios entre sí. El primer objetivo de esta tesis es el extender el fasor del Dr. Blasco, a la formulación fasorial de la potencia de distorsión. De esta forma se obtiene un procedimiento distinto y complementario al indicado en la norma reseñada, pero sin la intención de sustituirla, para la obtención de la potencia aparente total suministrada por la red en un punto de la misma. Ello ha dado lugar al primer artículo publicado del compendio de la presente tesis titulado "Formulation of the Phasors of Apparent Harmonic Power: Application to Non-Sinusoidal Three-Phase Power Systems", en la revista "Energies", indexada en JCR y publicado con fecha de julio de 2018. El segundo objetivo se centra en las potencias de desequilibrio, más concretamente en la modelización de circuitos compensadores pasivos constituidos por elementos reactivos, eliminando dichas potencias ineficientes de tal forma que no las tenga que entregar la red o el generador. La metodología de compensación que se describe en esta tesis, para sistemas a tres y cuatro hilos, no ocasiona un consumo energético adicional y es integrable en filtros híbridos, confiriéndole versatilidad y bajo coste económico. Dadas las características y particularidades de los sistemas eléctricos a tres y cuatro hilos, especialmente en las redes de baja tensión, hace que estos deban ser estudiados de forma separada. Ello dio como resultado la publicación de dos nuevos artículos en la revista "Applied Sciences" indexada en JCR. El primer artículo titulado "Compensation of Reactive Power and Unbalanced Power in Three-Phase Three-Wire Systems Connected to an Infinite Power Network", con fecha de publicación diciembre de 2019, se centra en la compensación de redes trifásicas a tres hilos en una red de potencia de cortocircuito infinita, y en él se describe la metodología de compensación de las corrientes de secuencia negativa e imaginaría de secuencia positiva, las cuales son responsables de las ineficiencias debidas a las potencias de desequilibrio y de desfase o reactiva, poniendo de manifiesto la forma en la cual interactúan entre sí los diferentes dispositivos de compensación cuando el sistema de tensiones es desequilibrado. Este artículo es el segundo del compendio de la presente tesis. El otro artículo, publicado en marzo de 2020 y titulado "Unbalanced and Reactive Currents Compensation in Three¿Phase Four¿Wire Sinusoidal Power Systems", se centra en la compensación de las ineficiencias ocasionadas en las redes eléctricas a 4 hilos por las corrientes de secuencia homopolar, las corrientes de secuencia negativa y la corriente positiva reactiva. Este artículo es el tercero y último del compendio de artículo[CA] El camp de la ciència on s'enquadra la present tesi doctoral, és un camp molt antic i molt estudiat. La primera experiència coneguda en transmissió d'energia elèctrica és atribuïda a H. Fontaine en 1873 en l'Exposició de Viena. Des de llavors s'han desenrotllat multitud de teories sobre la potència elèctrica, i encara que parega poc creïble, hui en dia encara no s'ha establit una teoria consensuada per tota la comunitat científica. No obstant això, sí que hi ha una norma establida que permet la construcció dels aparells de mesura davall uns mínims consensuats. Esta norma és la IEEE Std. 1459-2010. L'any 2015, el Dr. Pedro Ángel Blasco Espinosa, va presentar la seua tesi doctoral el títol de la qual és: "Formulación de la potencia de desequilibrio. Aplicación a redes eléctricas desequilibradas sinusoidales", en la qual es formulava fasorialment la potència de desequilibri, i conjuntament amb la potència aparent de seqüència positiva, obtenia la potència total subministrada per la xarxa en un punt de la mateixa. Esta potència coincidia amb l'obtinguda amb la norma ressenyada i amb la teoria de Buchholz (1922). No obstant això, deixava fora la potència de distorsió. Esta tesi té dos objectius diferenciats i complementaris entre si. El primer objectiu d'esta tesi és l'estendre el fasor del Dr. Blasco, a la formulació fasorial de la potència de distorsió. D'esta manera s'obté un procediment distint i complementari a l'indicat en la norma ressenyada, però sense la intenció de substituir-la, per a l'obtenció de la potència aparent total subministrada per la xarxa en un punt de la mateixa. Això ha donat lloc al primer article publicat del compendi de la present tesi titulat: "Formulation of the Phasors of Apparent Harmonic Power: Application to Non-Sinusoidal Three-Phase Power Systems", en la revista "Energies", indexada en JCR i publicat amb data juliol de 2018. El segon objectiu se centra en les potències de desequilibri, més concretament en la modelització de circuits compensadors passius constituïts per elements reactius, eliminant les dites potències ineficients de tal forma que no les haja d'entregar la xarxa o el generador. La metodologia de compensació que es descriu en esta tesi, per a sistemes a tres i quatre fils, no ocasiona un consum energètic addicional i és integrable en filtres híbrids, conferint-li versatilitat i baix cost econòmic. Donades les característiques i particularitats dels sistemes elèctrics a tres i quatre fils, especialment en les xarxes de baixa tensió, fa que estos hagen de ser estudiats de forma separada. Això va donar com resultat la publicació de dos nous articles en la revista "Applied Sciences" indexada en JCR. El primer article titulat "Compensation of Reactive Power and Unbalanced Power in Three-Phase Three-Wire Systems Connected to an Infinite Power Network", amb data publicació desembre de 2019, se centra en la compensació de xarxes trifàsiques a tres fils en una xarxa de potència de curtcircuit infinita, i en ell es descriu la metodologia de compensació dels corrents de seqüència negativa i imaginaria de seqüència positiva, les quals són responsables de les ineficiències degudes a les potències de desequilibri i de desfasament o reactiva, posant de manifest la forma en la qual interactuen entre si els diferents dispositius de compensació quan el sistema de tensions és desequilibrat. Este article és el segon del compendi de la present tesi. L'altre article, publicat al març de 2020 i titulat "Unbalanced and Reactive Currents Compensation in Three-Phase Four-Wire Sinusoidal Power Systems", se centra en la compensació de les ineficiències ocasionades en les xarxes elèctriques a 4 fils pels corrents de seqüència homopolar, els corrents de seqüència negativa i la corrent positiva reactiva. Este article és el tercer i últim del compendi d'articles de la present tesi.[EN] The area of science in which this doctoral thesis is framed is a very old and highly studied area. The first known experience in electric power transmission is attributed to H. Fontaine in 1873 at the Vienna Exposition. Since then, a multitude of theories on electrical power have been developed, and although it may seem unbelievable, today a theory agreed by the entire scientific community has not yet been established. However, there is an established standard that allows the construction of measuring devices under agreed minimums. This standard is IEEE Std. 1459-2010. In 2015, Dr. Pedro Ángel Blasco Espinosa, presented his doctoral thesis whose title is: "Formulation of the power of imbalance. Application to sinusoidal unbalanced electrical networks", in which the unbalance power was phasorly formulated, and together with the apparent power of positive sequence, it obtained the total power supplied by the network at one point of it. This power coincided with that obtained with the mentioned norm and with the theory of Buchholz (1922). However, it left out the distortion power. This thesis has two different and complementary objectives. The first objective of this thesis is to extend Dr. Blasco's phasor to the phasor formulation of distortion power. In this way, a different and complementary procedure to that indicated in the aforementioned standard is obtained, but without the intention of replacing it, to obtain the total apparent power supplied by the network at a point in it. This has led to the first published article in the compendium of this thesis entitled "Formulation of the Phasors of Apparent Harmonic Power: Application to Non-Sinusoidal Three-Phase Power Systems", in the journal "Energies", indexed in JCR and published with dated July 2018. The second objective focuses on the unbalance powers, more specifically on the modelling of passive compensating circuits made up of reactive elements, eliminating these inefficient powers in such a way that they do not have to be delivered by the network or the generator. The compensation methodology described in this thesis, for three and four-wire systems, does not cause additional energy consumption and is easy to implement in hybrid filters, giving it versatility and low economic cost. Given the characteristics and peculiarities of three and four wire electrical systems, especially in low voltage networks, it means that these must be studied separately. This resulted in the publication of two new articles in the journal "Applied Sciences" indexed in JCR. The first article entitled "Compensation of Reactive Power and Unbalanced Power in Three-Phase Three-Wire Systems Connected to an Infinite Power Network", published in December 2019, focuses on the compensation of three-wire three-phase networks with power of infinite short circuit, and it describes the compensation methodology of negative sequence current and positive reactive current, which are responsible for the inefficiencies due to the imbalance and phase shift or reactive powers, showing how which the different compensation devices interact with each other when the voltage system is unbalanced. This article is the second in the compendium of this thesis. The other article, published in March 2020 and titled "Unbalanced and Reactive Currents Compensation in Three-Phase Four-Wire Sinusoidal Power Systems", focuses on compensating for inefficiencies caused in 4-wire electrical networks by zero-sequence current, negative-sequence current and reactive positive-sequence current. This article is the third and last of the compendium of articles in this thesis.Montoya Mira, R. (2020). Investigación para la extensión del Fasor de la potencia aparente de desequilibrio a la potencia aparente de distorsión. Nuevo método para la compensación de la potencia reactiva y potencias de desequilibrio en sistemas trifásicos sinusoidales desequilibrados [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/147111TESISCompendi

    An Alternate Representation of the Vector of Apparent Power and Unbalanced Power in Three-Phase Electrical Systems

    Full text link
    [EN] Low-voltage distribution systems are typically unbalanced. These ine¿ciencies cause unbalanced powers that can significantly increase the apparent power of the system. Analysing and measuring these ine¿cient powers appropriately allows us to compensate for them and obtain a more e¿cient system. Correcting the imbalance at some nodes can worsen the rest of the system; therefore, it is essential that all nodes are analysed such that action can be taken when necessary. In most studies, the unbalanced power is measured from the modulus. Other more recent studies have proposed phasor expressions of unbalanced powers; however, in both cases, these are not enough to address the compensation of unbalanced powers in systems with unbalanced voltages. In this work, a di¿erent representation of the vector expressions for analysis of the unbalanced powers and the apparent powers of the three-phase linear systems is proposed. Additionally, these vector expressions are extended to nonlinear systems to quantify the harmonic apparent powers. These expressions have been formulated from the power of Buchholz and are valid for systems with unbalanced voltages and currents. To help understand the use of the proposed formulation, a practical case of a three-phase four-wire system with unbalanced loads and voltages is demonstrated.This work is supported by the Spanish Ministry of Science, Innovation and Universities (MICINN) and the European Regional Development Fund (ERDF) under Grant RTI2018-100732-B-C21.Blasco Espinosa, PA.; Montoya-Mira, R.; Diez-Aznar, J.; Montoya Villena, R. (2020). An Alternate Representation of the Vector of Apparent Power and Unbalanced Power in Three-Phase Electrical Systems. Applied Sciences. 10(11):1-16. https://doi.org/10.3390/app10113756S1161011Emanuel, A. E. (1993). On the definition of power factor and apparent power in unbalanced polyphase circuits with sinusoidal voltage and currents. IEEE Transactions on Power Delivery, 8(3), 841-852. doi:10.1109/61.252612Willems, J. L. (2004). Reflections on Apparent Power and Power Factor in Nonsinusoidal and Polyphase Situations. IEEE Transactions on Power Delivery, 19(2), 835-840. doi:10.1109/tpwrd.2003.823182Emanuel, A. E. (1999). Apparent power definitions for three-phase systems. IEEE Transactions on Power Delivery, 14(3), 767-772. doi:10.1109/61.772313Czarnecki, L. S. (1994). Misinterpretations of some power properties of electric circuits. IEEE Transactions on Power Delivery, 9(4), 1760-1769. doi:10.1109/61.329509Kersting, W. H. (2001). Causes and effects of unbalanced voltages serving an induction motor. IEEE Transactions on Industry Applications, 37(1), 165-170. doi:10.1109/28.903142Pillay, P., & Manyage, M. (2006). Loss of Life in Induction Machines Operating With Unbalanced Supplies. IEEE Transactions on Energy Conversion, 21(4), 813-822. doi:10.1109/tec.2005.853724Poblador, M. L. A., & Lopez, G. A. R. (2013). Power calculations in nonlinear and unbalanced conditions according to IEEE Std 1459-2010. 2013 Workshop on Power Electronics and Power Quality Applications (PEPQA). doi:10.1109/pepqa.2013.6614957Langella, R., Testa, A., & Emanuel, A. E. (2012). Unbalance Definition for Electrical Power Systems in the Presence of Harmonics and Interharmonics. IEEE Transactions on Instrumentation and Measurement, 61(10), 2622-2631. doi:10.1109/tim.2012.2209909Kukačka, L., Kraus, J., Kolář, M., Dupuis, P., & Zissis, G. (2016). Review of AC power theories under stationary and non‐stationary, clean and distorted conditions. IET Generation, Transmission & Distribution, 10(1), 221-231. doi:10.1049/iet-gtd.2015.0713Chicco, G., Postolache, P., & Toader, C. (2007). Analysis of Three-Phase Systems With Neutral Under Distorted and Unbalanced Conditions in the Symmetrical Component-Based Framework. IEEE Transactions on Power Delivery, 22(1), 674-683. doi:10.1109/tpwrd.2006.887095Paap, G. C. (2000). Symmetrical components in the time domain and their application to power network calculations. IEEE Transactions on Power Systems, 15(2), 522-528. doi:10.1109/59.867135León-Martínez, V., & Montañana-Romeu, J. (2018). Formulations for the apparent and unbalanced power vectors in three-phase sinusoidal systems. Electric Power Systems Research, 160, 37-43. doi:10.1016/j.epsr.2018.01.028Castilla, M., Bravo, J. C., Ordonez, M., & Montano, J. C. (2008). Clifford Theory: A Geometrical Interpretation of Multivectorial Apparent Power. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(10), 3358-3367. doi:10.1109/tcsi.2008.924885Diez, J. M., Blasco, P. A., & Montoya, R. (2016). Formulation of phasor unbalance power: application to sinusoidal power systems. IET Generation, Transmission & Distribution, 10(16), 4178-4186. doi:10.1049/iet-gtd.2016.0730Tongxin Zheng, Makram, E. B., & Girgis, A. A. (2003). Evaluating power system unbalance in the presence of harmonic distortion. IEEE Transactions on Power Delivery, 18(2), 393-397. doi:10.1109/tpwrd.2002.807460Mohamadian, S., & Shoulaie, A. (2011). Comprehensive Definitions for Evaluating Harmonic Distortion and Unbalanced Conditions in Three- and Four-Wire Three-Phase Systems Based on IEEE Standard 1459. IEEE Transactions on Power Delivery, 26(3), 1774-1782. doi:10.1109/tpwrd.2011.2126609Blasco, P. A., Montoya-Mira, R., Diez, J. M., Montoya, R., & Reig, M. J. (2019). Compensation of Reactive Power and Unbalanced Power in Three-Phase Three-Wire Systems Connected to an Infinite Power Network. Applied Sciences, 10(1), 113. doi:10.3390/app10010113Montoya-Mira, R., Blasco, P. A., Diez, J. M., Montoya, R., & Reig, M. J. (2020). Unbalanced and Reactive Currents Compensation in Three-Phase Four-Wire Sinusoidal Power Systems. Applied Sciences, 10(5), 1764. doi:10.3390/app10051764Salmerón, P., Vázquez, J. R., Herrera, R. S., & Litrán, S. P. (2007). Apparent power and power factor in unbalanced and distorted systems. Applications in three phase load compensations. Renewable Energy and Power Quality Journal, 1(05), 442-447. doi:10.24084/repqj05.31

    Unbalanced and Reactive Currents Compensation in Three-Phase Four-Wire Sinusoidal Power Systems

    Full text link
    [EN] In an unbalanced linear three-phase electrical system, there are inefficient powers that increase the apparent power supplied by the network, line losses, machine malfunctions, etc. These inefficiencies are mainly due to the use of unbalanced loads. Unlike a three-wire unbalanced system, a four-wire system has zero sequence currents that circulate through the neutral wire and can be compensated by means of compensation equipment, which prevents it from being delivered by the network. To design a compensator that works with unbalanced voltages, it is necessary to consider the interactions between it and the other compensators used to compensate for negative-sequence currents and positive-sequence reactive currents. In this paper, through passive compensation, a new method is proposed to develop the zero sequence current compensation equipment. The method does not require iteration algorithms and is valid for unbalanced voltages. In addition, the interactions between all compensators are analyzed, and the necessary modifications in the calculations are proposed to obtain a total compensation. To facilitate the application of the method and demonstrate its validity, a case study is developed from a three-phase linear four-wire system with unbalanced voltages and loads. The results obtained are compared with other compensation methods that also use passive elements.This work is supported by the Spanish Ministry of Science, Innovation and Universities (MICINN) and the European Regional Development Fund (ERDF) under grant RTI2018-100732-B-C21.Montoya-Mira, R.; Blasco Espinosa, PA.; Diez-Aznar, J.; Montoya Villena, R.; Reig-Pérez, MJ. (2020). Unbalanced and Reactive Currents Compensation in Three-Phase Four-Wire Sinusoidal Power Systems. Applied Sciences. 10(5):1-23. https://doi.org/10.3390/app10051764S123105Sainz, L., Caro, M., & Caro, E. (2009). Analytical Study of the Series Resonance in Power Systems With the Steinmetz Circuit. IEEE Transactions on Power Delivery, 24(4), 2090-2098. doi:10.1109/tpwrd.2009.2028790Emanuel, A. E. (1993). On the definition of power factor and apparent power in unbalanced polyphase circuits with sinusoidal voltage and currents. IEEE Transactions on Power Delivery, 8(3), 841-852. doi:10.1109/61.252612Willems, J. L. (2004). Reflections on Apparent Power and Power Factor in Nonsinusoidal and Polyphase Situations. IEEE Transactions on Power Delivery, 19(2), 835-840. doi:10.1109/tpwrd.2003.823182Pillay, P., & Manyage, M. (2006). Loss of Life in Induction Machines Operating With Unbalanced Supplies. IEEE Transactions on Energy Conversion, 21(4), 813-822. doi:10.1109/tec.2005.853724Poblador, M. L. A., & Lopez, G. A. R. (2013). Power calculations in nonlinear and unbalanced conditions according to IEEE Std 1459-2010. 2013 Workshop on Power Electronics and Power Quality Applications (PEPQA). doi:10.1109/pepqa.2013.6614957IEEE Recommended Practice for Monitoring Electric Power Quality. (s. f.). doi:10.1109/ieeestd.2019.8796486Blasco, P. A., Montoya-Mira, R., Diez, J. M., Montoya, R., & Reig, M. J. (2019). Compensation of Reactive Power and Unbalanced Power in Three-Phase Three-Wire Systems Connected to an Infinite Power Network. Applied Sciences, 10(1), 113. doi:10.3390/app10010113San-Yi Lee, & Chi-Jui Wu. (1993). On-line reactive power compensation schemes for unbalanced three phase four wire distribution feeders. IEEE Transactions on Power Delivery, 8(4), 1958-1965. doi:10.1109/61.248308Otto, R. A., Putman, T. H., & Gyugyi, L. (1978). Principles and Applications of Static, Thyristor-Controlled Shunt Compensators. IEEE Transactions on Power Apparatus and Systems, PAS-97(5), 1935-1945. doi:10.1109/tpas.1978.354690Origa de Oliveira, L. C., Barros Neto, M. C., & de Souza, J. B. (s. f.). Load compensation in four-wire electrical power systems. PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409). doi:10.1109/icpst.2000.898206Li, E., Sheng, W., Wang, X., & Wang, B. (2011). Combined compensation strategies based on instantaneous reactive power theory for reactive power compensation and load balancing. 2011 International Conference on Electrical and Control Engineering. doi:10.1109/iceceng.2011.6057765Leon-Martinez, V., & Montanana-Romeu, J. (2014). Representation of load imbalances through reactances. Application to working standards. 2014 16th International Conference on Harmonics and Quality of Power (ICHQP). doi:10.1109/ichqp.2014.6842894Czarnecki, L. S., & Haley, P. M. (2015). Unbalanced Power in Four-Wire Systems and Its Reactive Compensation. IEEE Transactions on Power Delivery, 30(1), 53-63. doi:10.1109/tpwrd.2014.2314599Czarnecki, L. S. (1989). Reactive and unbalanced currents compensation in three-phase asymmetrical circuits under nonsinusoidal conditions. IEEE Transactions on Instrumentation and Measurement, 38(3), 754-759. doi:10.1109/19.32187Czarnecki, L. S. (1988). Orthogonal decomposition of the currents in a 3-phase nonlinear asymmetrical circuit with a nonsinusoidal voltage source. IEEE Transactions on Instrumentation and Measurement, 37(1), 30-34. doi:10.1109/19.2658Pană, A., Băloi, A., & Molnar-Matei, F. (2018). From the Balancing Reactive Compensator to the Balancing Capacitive Compensator. Energies, 11(8), 1979. doi:10.3390/en1108197

    Improving the energy efficiency of slightly inductive three-phase three-wire linear systems through single-phase capacitors banks

    Full text link
    [EN] Recent low-voltage, three-phase distribution networks carry inefficient power, which can be attributed to the reactive power, imbalance of linear loads, and increase in non-linear loads. Researchers have mainly focused on developing active filters to improve the quality of electrical energy. However, in most cases, compensating for the reactive power is sufficient, considering cost and quality. Active filters are expensive, thus, passive compensators are more appealing. These devices are composed of single-phase or three-phase capacitor banks that act on the reactive power consumed by the load. The operation of these devices has been sufficiently validated owing to their long-term use. For unbalanced power, compensators that contain coils are used. A methodology to obtain compensators comprising only single-phase capacitors for the inductive reactive power consumed by the load is presented here; if designed appropriately, these compensators can compensate for a part of or the entire unbalanced power, resulting in greater efficiency in the transfer of electrical energy.Spanish Ministry of Science, Innovation, and Universities (MICINN); European Regional Development Fund (ERDF), Grant/AwardNumber: RTI2018100732-B-C21Blasco Espinosa, PA.; Montoya-Mira, R.; Diez-Aznar, J.; Montoya Villena, R.; Garcerá, G.; Figueres Amorós, E. (2022). Improving the energy efficiency of slightly inductive three-phase three-wire linear systems through single-phase capacitors banks. IET Generation Transmission & Distribution. 16(6):1212-1224. https://doi.org/10.1049/gtd2.12361S1212122416

    Equivalent circuit and calculation of unbalanced power in three-wire three-phase linear networks

    Full text link
    [EN] For analysis of three-wire three-phase linear systems, the transformations wye-delta and delta-wye from theorem of Kennelly are used. These transformations can be applied to balanced systems but not to unbalanced systems. This is due to the fact that zero-sequence voltages or zero-sequence currents are present in these types of connections. This modifies the value of the unbalance power in the load with respect to the generator. These zero-sequence voltages and currents that appear in generators and loads are not transferred over the network. The zero-sequence voltage in a delta-connected load and the zero-sequence current that is obtained using theorem of Kennelly in a star-connected load, or vice versa, cause different imbalance effects. Here, the equivalent circuit for any point of the system is developed. The impedances of the equivalent circuit in any node are calculated using line-to-line voltages and line currents. This equivalent circuit incorporates all energetic phenomena, including the unbalance of all downstream loads. For its verification, the phasor unbalance power is used.Montoya-Mira, R.; Diez-Aznar, J.; Blasco Espinosa, PA.; Montoya Villena, R. (2018). Equivalent circuit and calculation of unbalanced power in three-wire three-phase linear networks. IET Generation Transmission & Distribution. 12(7):1466-1473. https://doi.org/10.1049/iet-gtd.2017.0670S14661473127Emanuel, A. E. (1993). On the definition of power factor and apparent power in unbalanced polyphase circuits with sinusoidal voltage and currents. IEEE Transactions on Power Delivery, 8(3), 841-852. doi:10.1109/61.252612Jeon, S.-J. (2005). Definitions of Apparent Power and Power Factor in a Power System Having Transmission Lines With Unequal Resistances. IEEE Transactions on Power Delivery, 20(3), 1806-1811. doi:10.1109/tpwrd.2005.848658Czarnecki, L. S. (1994). Misinterpretations of some power properties of electric circuits. IEEE Transactions on Power Delivery, 9(4), 1760-1769. doi:10.1109/61.329509Willems, J. L. (2004). Reflections on Apparent Power and Power Factor in Nonsinusoidal and Polyphase Situations. IEEE Transactions on Power Delivery, 19(2), 835-840. doi:10.1109/tpwrd.2003.823182Emanuel, A. E. (1999). Apparent power definitions for three-phase systems. IEEE Transactions on Power Delivery, 14(3), 767-772. doi:10.1109/61.772313Jayatunga, U., Ciufo, P., Perera, S., & Agalgaonkar, A. P. (2015). Deterministic methodologies for the quantification of voltage unbalance propagation in radial and interconnected networks. IET Generation, Transmission & Distribution, 9(11), 1069-1076. doi:10.1049/iet-gtd.2014.0661Von Jouanne, A., & Banerjee, B. (2001). Assessment of voltage unbalance. IEEE Transactions on Power Delivery, 16(4), 782-790. doi:10.1109/61.956770Viswanadha Raju, G. K., & Bijwe, P. R. (2008). Efficient reconfiguration of balanced and unbalanced distribution systems for loss minimisation. IET Generation, Transmission & Distribution, 2(1), 7. doi:10.1049/iet-gtd:20070216Kersting, W. H. (2001). Causes and effects of unbalanced voltages serving an induction motor. IEEE Transactions on Industry Applications, 37(1), 165-170. doi:10.1109/28.903142Pillay, P., & Manyage, M. (2006). Loss of Life in Induction Machines Operating With Unbalanced Supplies. IEEE Transactions on Energy Conversion, 21(4), 813-822. doi:10.1109/tec.2005.853724Emanuel, A. E. (1998). The Buchholz-Goodhue apparent power definition: the practical approach for nonsinusoidal and unbalanced systems. IEEE Transactions on Power Delivery, 13(2), 344-350. doi:10.1109/61.660900Leon-Martinez, V., Montanana-Romeu, J., & Palazon-Garcia, J. M. (2011). Unbalance Compensator for Three-Phase Industrial Installations. IEEE Latin America Transactions, 9(5), 808-814. doi:10.1109/tla.2011.6030993Reginatto, R., & Ramos, R. A. (2014). On electrical power evaluation in dq coordinates under sinusoidal unbalanced conditions. IET Generation, Transmission & Distribution, 8(5), 976-982. doi:10.1049/iet-gtd.2013.0532Diez, J. M., Blasco, P. A., & Montoya, R. (2016). Formulation of phasor unbalance power: application to sinusoidal power systems. IET Generation, Transmission & Distribution, 10(16), 4178-4186. doi:10.1049/iet-gtd.2016.0730Marzband, M., Moghaddam, M. M., Akorede, M. F., & Khomeyrani, G. (2016). Adaptive load shedding scheme for frequency stability enhancement in microgrids. Electric Power Systems Research, 140, 78-86. doi:10.1016/j.epsr.2016.06.03

    Formulation of the Phasors of Apparent Harmonic Power: Application to Non-Sinusoidal Three-Phase Power Systems

    Full text link
    [EN] In this work, the expression of the phasor of apparent power of harmonic distortion is formulated in the time domain. Applying this phasor along with the phasor of apparent unbalancep power allows us to obtain a new set of phasors that include all of the inefficient power components appearing in the transfer of energy in non-linear and unbalanced systems.This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (ERDF) under Grant ENE2015-64087-C2-2R.Blasco Espinosa, PA.; Montoya-Mira, R.; Diez-Aznar, J.; Montoya Villena, R.; Reig-Pérez, MJ. (2018). Formulation of the Phasors of Apparent Harmonic Power: Application to Non-Sinusoidal Three-Phase Power Systems. Energies. 11(7):1-16. https://doi.org/10.3390/en11071888S11611

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation

    Get PDF
    One of the ways in which legal services are financed, and indeed shaped, is through private insurance arrangement. Two contrasting types of legal expenses insurance contracts (LEI) seem to dominate in Europe: before the event (BTE) and after the event (ATE) legal expenses insurance. Notwithstanding institutional differences between different legal systems, BTE and ATE insurance arrangements may be instrumental if government policy is geared towards strengthening a market-oriented system of financing access to justice for individuals and business. At the same time, emphasizing the role of a private industry as a keeper of the gates to justice raises issues of accountability and transparency, not readily reconcilable with demands of competition. Moreover, multiple actors (clients, lawyers, courts, insurers) are involved, causing behavioural dynamics which are not easily predicted or influenced. Against this background, this paper looks into BTE and ATE arrangements by analysing the particularities of BTE and ATE arrangements currently available in some European jurisdictions and by painting a picture of their respective markets and legal contexts. This allows for some reflection on the performance of BTE and ATE providers as both financiers and keepers. Two issues emerge from the analysis that are worthy of some further reflection. Firstly, there is the problematic long-term sustainability of some ATE products. Secondly, the challenges faced by policymakers that would like to nudge consumers into voluntarily taking out BTE LEI

    Search for stop and higgsino production using diphoton Higgs boson decays

    Get PDF
    Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top-quark (stop) and the Higgs boson (higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7 inverse femtobarns of proton-proton collision data at sqrt(s) = 8 TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the stop mass below 360 to 410 GeV, depending on the higgsino mass
    corecore