69 research outputs found

    Electrical and Mechanical Ventricular Activation During Left Bundle Branch Block and Resynchronization

    Get PDF
    Cardiac resynchronization therapy (CRT) aims to treat selected heart failure patients suffering from conduction abnormalities with left bundle branch block (LBBB) as the culprit disease. LBBB remained largely underinvestigated until it became apparent that the amount of response to CRT was heterogeneous and that the therapy and underlying pathology were thus incompletely understood. In this review, current knowledge concerning activation in LBBB and during biventricular pacing will be explored and applied to current CRT practice, highlighting novel ways to better measure and treat the electrical substrate

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Long-term cognitive and behavioral consequences of neonatal encephalopathy following perinatal asphyxia: a review

    Get PDF
    Neonatal encephalopathy (NE) following perinatal asphyxia (PA) is considered an important cause of later neurodevelopmental impairment in infants born at term. This review discusses long-term consequences for general cognitive functioning, educational achievement, neuropsychological functioning and behavior. In all areas reviewed, the outcome of children with mild NE is consistently positive and the outcome of children with severe NE consistently negative. However, children with moderate NE form a more heterogeneous group with respect to outcome. On average, intelligence scores are below those of children with mild NE and age-matched peers, but within the normal range. With respect to educational achievement, difficulties have been found in the domains reading, spelling and arithmetic/mathematics. So far, studies of neuropsychological functioning have yielded ambiguous results in children with moderate NE. A few studies suggest elevated rates of hyperactivity in children with moderate NE and autism in children with moderate and severe NE. Conclusion: Behavioral monitoring is required for all children with NE. In addition, systematic, detailed neuropsychological examination is needed especially for children with moderate NE

    Cardiac lymphatics in health and disease

    Get PDF
    The lymphatic vasculature, which accompanies the blood vasculature in most organs, is indispensable in the maintenance of tissue fluid homeostasis, immune cell trafficking, and nutritional lipid uptake and transport, as well as in reverse cholesterol transport. In this Review, we discuss the physiological role of the lymphatic system in the heart in the maintenance of cardiac health and describe alterations in lymphatic structure and function that occur in cardiovascular pathology, including atherosclerosis and myocardial infarction. We also briefly discuss the role that immune cells might have in the regulation of lymphatic growth (lymphangiogenesis) and function. Finally, we provide examples of how the cardiac lymphatics can be targeted therapeutically to restore lymphatic drainage in the heart to limit myocardial oedema and chronic inflammation.Peer reviewe

    Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: part I - analytical validation and clinical qualification

    Get PDF
    Cardiovascular disease remains a leading cause of morbidity and mortality globally. Changing natural history of the disease due to improved care of acute conditions and ageing population necessitates new strategies to tackle conditions which have more chronic and indolent course. These include an increased deployment of safe screening methods, life-long surveillance, and monitoring of both disease activity and tailored-treatment, by way of increasingly personalized medical care. Cardiovascular magnetic resonance (CMR) is a non-invasive, ionising radiation-free method, which can support a significant number of clinically relevant measurements and offers new opportunities to advance the state of art of diagnosis, prognosis and treatment. The objective of the SCMR Clinical Trial Taskforce was to summarizes the evidence to emphasize where currently CMR-guided clinical care can indeed translate into meaningful use and efficient deployment of resources results in meaningful and efficient use. The objective of the present initiative was to provide an appraisal of evidence on analytical validation, including the accuracy and precision, and clinical qualification of parameters in disease context, clarifying the strengths and weaknesses of the state of art, as well as the gaps in the current evidence This paper is complementary to the existing position papers on standardized acquisition and post-processing ensuring robustness and transferability for widespread use. Themed imaging-endpoint guidance on trial design to support drug-discovery or change in clinical practice (part II), will be presented in a follow-up paper in due course. As CMR continues to undergo rapid development, regular updates of the present recommendations are foreseen

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    The evolution of the macrophage-specific enhancer (Fms intronic regulatory element) within the CSF1R locus of vertebrates

    Get PDF
    The Csf1r locus encodes the receptor for macrophage colony-stimulating factor, which controls the proliferation, differentiation and survival of macrophages. The 300 bp Fms intronic regulatory element (FIRE), within the second intron of Csf1r, is necessary and sufficient to direct macrophage-specific transcription. We have analysed the conservation and divergence of the FIRE DNA sequence in vertebrates. FIRE is present in the same location in the Csf1r locus in reptile, avian and mammalian genomes. Nearest neighbor analysis based upon this element alone largely recapitulates phylogenies inferred from much larger genomic sequence datasets. One core element, containing binding sites for AP1 family and the macrophage-specific transcription factor, PU.1, is conserved from lizards to humans. Around this element, the FIRE sequence is conserved within clades with the most conserved elements containing motifs for known myeloid-expressed transcription factors. Conversely, there is little alignment between clades outside the AP1/PU.1 element. The analysis favours a hybrid between "enhanceosome" and "smorgasbord" models of enhancer function, in which elements cooperate to bind components of the available transcription factor milieu

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    Quantifying the Erlenmeyer flask deformity

    No full text
    corecore