518 research outputs found

    A novel scytalidium species : understand the cellulolytic system for biomass saccharification

    Get PDF
    In order to overcome the bottlenecks related to lignocellulosic-derived sugars, the search for more efficient enzymatic cocktails, containing a broad-spectrum of specific activities, relies on an important feature. This paper describes new enzyme activities derived from the novel strain of the Scytalidium genus isolated from the Amazonas rainforest. The production of the enzymatic cocktail was induced by delignifiedhydrothermal bagasse (DHB), and yeast extract was used to improve secretion activities, resulting in a positive influence on total cellulase activity. The enzymatic cocktail produced by this novel strain contains specific activities for biomass degradation, including FPAse, xylanase and β-glucosidase. Moreover, it is capable of hydrolyzing 62% of the alkaline pretreated bagasse, surpassing in 14% the hydrolytic capability achieved by the commercial cocktail Celluclast. To this extent, the strain described here emerges as a reliable alternative to other available enzymes and, consequently, amplification of available specific substrate activities3618597FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2010/51309-

    Transverse spin dynamics in a spin-polarized Fermi liquid

    Full text link
    The linear equations for transverse spin dynamics in weakly polarised degenerate Fermi liquid with arbitrary relationship between temperature and polarization are derived from Landau-Silin phenomenological kinetic equation with general form of two-particle collision integral. The temperature and polarization dependence of the spin current relaxation time is established. It is found in particular that at finite polarization transverse spin wave damping has a finite value at T=0. The analogy between temperature dependences of spin waves attenuation and ultrasound absorption in degenerate Fermi liquid at arbitrary temperature is presented. We also discuss spin-polarized Fermi liquid in the general context of the Fermi-liquid theory and compare it with "Fermi liquid" with spontaneous magnetization.Comment: 10 page

    Assessing the role of compound drought and heatwave events on unprecedented 2020 wildfires in the Pantanal

    Get PDF
    The year 2020 had the most catastrophic fire season over the last two decades in the Pantanal, which led to outstanding environmental impacts. Indeed, much of the Pantanal has been affected by severe dry conditions since 2019, with evidence of the 2020's drought being the most extreme and widespread ever recorded in the last 70 years. Although it is unquestionable that this mega-drought contributed significantly to the increase of fire risk, so far, the 2020's fire season has been analyzed at the univariate level of a single climate event, not considering the co-occurrence of extreme and persistent temperatures with soil dryness conditions. Here, we show that similarly to other areas of the globe, the influence of land-atmosphere feedbacks contributed decisively to the simultaneous occurrence of dry and hot spells (HPs), exacerbating fire risk. The ideal synoptic conditions for strong atmospheric heating and large evaporation rates were present, in particular during the HPs, when the maximum temperature was, on average, 6 °C above the normal. The short span of the period during those compound drought-heatwave (CDHW) events accounted for 55% of the burned area of 2020. The vulnerability in the northern forested areas was higher than in the other areas, revealing a synergistic effect between fuel availability and weather-hydrological conditions. Accordingly, where fuel is not a limiting factor, fire activity tends to be more modelled by CDHW events. Our work advances beyond an isolated event-level basis towards a compound and cascading natural hazards approach, simultaneously estimating the contribution of drought and heatwaves to fuelling extreme fire outbreaks in the Pantanal such as those in 2020. Thus, these findings are relevant within a broader context, as the driving mechanisms apply across other ecosystems, implying higher flammability conditions and further efforts for monitoring and predicting such extreme events

    Emerging Enteropathogenic Escherichia coli Strains?

    Get PDF
    Escherichia coli strains of nonenteropathogenic serogroups carrying eae but lacking the enteropathogenic E. coli adherence factor plasmid and Shiga toxin DNA probe sequences were isolated from patients (children, adults, and AIDS patients) with and without diarrhea in Brazil. Although diverse in phenotype and genotype, some strains are potentially diarrheagenic

    A systematic review of artificial intelligence impact assessments

    Get PDF
    Artificial intelligence (AI) is producing highly beneficial impacts in many domains, from transport to healthcare, from energy distribution to marketing, but it also raises concerns about undesirable ethical and social consequences. AI impact assessments (AI-IAs) are a way of identifying positive and negative impacts early on to safeguard AI’s benefits and avoid its downsides. This article describes the first systematic review of these AI-IAs. Working with a population of 181 documents, the authors identified 38 actual AI-IAs and subjected them to a rigorous qualitative analysis with regard to their purpose, scope, organisational context, expected issues, timeframe, process and methods, transparency and challenges. The review demonstrates some convergence between AI-IAs. It also shows that the field is not yet at the point of full agreement on content, structure and implementation. The article suggests that AI-IAs are best understood as means to stimulate reflection and discussion concerning the social and ethical consequences of AI ecosystems. Based on the analysis of existing AI-IAs, the authors describe a baseline process of implementing AI-IAs that can be implemented by AI developers and vendors and that can be used as a critical yardstick by regulators and external observers to evaluate organisations’ approaches to AI

    Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV

    Get PDF
    The elliptic, v2v_2, triangular, v3v_3, and quadrangular, v4v_4, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range η<0.8|\eta|<0.8 at different collision centralities and as a function of transverse momentum, pTp_{\rm T}, out to pT=20p_{\rm T}=20 GeV/cc. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for pT>8p_{\rm T}>8 GeV/cc. The small pTp_{\rm T} dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to pT=8p_{\rm T}=8 GeV/cc. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least pT=8p_{\rm T}=8 GeV/cc indicating that the particle type dependence persists out to high pTp_{\rm T}.Comment: 16 pages, 5 captioned figures, authors from page 11, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
    corecore