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Abstract
The year 2020 had the most catastrophic fire season over the last two decades in the Pantanal,
which led to outstanding environmental impacts. Indeed, much of the Pantanal has been affected
by severe dry conditions since 2019, with evidence of the 2020’s drought being the most extreme
and widespread ever recorded in the last 70 years. Although it is unquestionable that this
mega-drought contributed significantly to the increase of fire risk, so far, the 2020’s fire season has
been analyzed at the univariate level of a single climate event, not considering the co-occurrence of
extreme and persistent temperatures with soil dryness conditions. Here, we show that similarly to
other areas of the globe, the influence of land-atmosphere feedbacks contributed decisively to the
simultaneous occurrence of dry and hot spells (HPs), exacerbating fire risk. The ideal synoptic
conditions for strong atmospheric heating and large evaporation rates were present, in particular
during the HPs, when the maximum temperature was, on average, 6 ◦C above the normal. The
short span of the period during those compound drought-heatwave (CDHW) events accounted for
55% of the burned area of 2020. The vulnerability in the northern forested areas was higher than in
the other areas, revealing a synergistic effect between fuel availability and weather-hydrological
conditions. Accordingly, where fuel is not a limiting factor, fire activity tends to be more modelled
by CDHW events. Our work advances beyond an isolated event-level basis towards a compound
and cascading natural hazards approach, simultaneously estimating the contribution of drought
and heatwaves to fuelling extreme fire outbreaks in the Pantanal such as those in 2020. Thus, these
findings are relevant within a broader context, as the driving mechanisms apply across other
ecosystems, implying higher flammability conditions and further efforts for monitoring and
predicting such extreme events.

1. Introduction

In 2020, the world witnessed one-quarter of the
Brazilian Pantanal, the largest continuous tropical

wetland, on fire [1, 2]. More than 3.9 million hectares
were burned, an area four times larger than the long-
term average observed between 2001 and 2019 [3, 4].
The Pantanal 2020 fire (hereafter P20F) season may
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have directly affected 17 million native vertebrates
[5] and resulted in total national economic losses of
∼USD 3.6 billion [6].

These extremely intense impacts inevitably raise
the doubt: why was the P20F so exceptional? Evid-
ence is mounting that the P20F resulted from a com-
plex interplay of distinct contributing components,
including human factors, landscape characteristics,
and adverse meteorological conditions [2, 7]. Glob-
ally, the year 2020 tied with 2016 for the warmest
year on record since record-keeping began in 1880
[8], with several record-breaking temperature (com-
pounded) events taking place in different regions. The
2019/2020 mega-fires in Australia were tightly linked
to record-breaking temperatures, both induced to a
large extent, by widespread prolonged severe dry-
ness [9–11]. The 2020’s catastrophic fires in Cali-
fornia were enabled by long-lasting dry conditions
across much of western U.S [12]. Among the 2020´s
unprecedented climate conditions favoring fire activ-
ity in Oceania, Euro-Asia and North America, South
America (SA) was not an exception [13]. Extreme dry
conditions were reported in countries across central-
south SA, reaching Argentina, Brazil, Bolivia and
Paraguay [14–16]. Much of SA has been in drought
since 2019, influenced by a warming trend in the sea
surface temperature of Pacific and Atlantic Oceans
[14–17].

The extremely dry conditions across central-
south SA were accompanied by heatwave (HW) epis-
odes throughout the austral spring which triggered
record-breaking daily maximum temperatures [18].
In Brazil, between the end of September and early
November, when anomalies were persistently above
5 ◦C in the central and southeastern regions, includ-
ing the Pantanal [18, 19], several warnings of the
HWs’ risk were issued.

Previous studies suggest that the P20Fs were
strongly influenced by the most extreme drought
recorded in the region since 1950 [2, 7, 18] which was
accompanied by the occurrence of several prolonged
periods of extremely high temperatures. Compound
drought-HW (CDHW) events usually cause more
severe wildfires than single events of drought or HW
alone [20] and are being routinely reported world-
wide [21–26], including in Brazil [27]. Although
understanding the factors that influence the regional
occurrence of a CDHW event is imperative, so far, its
characterization and association with fire outbreaks
have not been fully explored in wetlands such as the
Pantanal. Thus, this study aims to assess, for the first
time, the severe CDHW conditions and the land-
atmosphere feedbacks associated with the P20Fs. A
detailed analysis of the exceptional P20F season is
provided together with the spatial and temporal ana-
lysis of surface conditions and the associated synop-
tic patterns. The present approach provides a more
comprehensive understanding of the physical land-
atmosphere coupling mechanisms associated with

this extreme climate event, highlighting its dominant
role in the observed record-breaking fires.

2. Data andmethods

2.1. Datasets
Burned area (BA) was obtained from two main
sources. Monthly values were obtained from the
MCD64A1 collection 6 derived from the MODIS
(moderate resolution imaging spectroradiometer)
sensor at 500 m spatial resolution from 2001 to 2020
[28]. For improved accuracy on day-to-day variabil-
ity of BA [29], daily values for 2020 were obtained
through the ALARMES dataset with a 500 m spatial
resolution using images from the visible infrared ima-
ging suite imager sensor [29].

Meteorological parameters, including maximum
temperature (Tmax), precipitation, surface net solar
radiation, geopotential height and temperature at
several levels of the atmosphere were extracted, at
daily scale, from the European Centre of Medium-
rangeWeather Forecast ERA-5 reanalysis dataset [30].
Soilmoisture, evaporation and potential evaporation,
at daily scale, were obtained from the Global Land
Evaporation Amsterdam Model (GLEAM v3.5a)
[31, 32]. All variables were retrieved at a gridded
0.25◦ × 0.25◦ spatial resolution and the composite
anomalies were computed with respect to the clima-
tological seasonal cycle (1981–2010).

Surface meteorological fire danger conditions
were evaluated using the fire weather index (FWI)
[33], allowing summarizing the chances of a fire
to ignite and propagate and to foresee hazardous
fire conditions [34]. The FWI product is provided
by the Copernicus Emergency Management Service
[35], computed with meteorological fields from the
ERA5 reanalysis [36]. Daily values were obtained for
the historical period (1980–2020) on a regular grid
of 0.25◦ × 0.25◦ resolution [37]. All analyses were
carried out for the Brazilian sector of the Pantanal
wetland.

2.2. Methodology
2.2.1. Fire analysis
To assess the exceptionality of the P20Fs we con-
sidered the ratio between the total BA in 2020 and
the respective mean BA for the 2001–2019 period.
We also estimated the fire return period, defined as
the ratio between the 20 years that encompass our
study period (2001–2020) and the annual recurrence.
Finally, we computed the 75th percentile (P75) of the
2001–2019 period and the percentage of the 2020 BA
with no fire and low recurrence (1–2 years). The
above-mentioned metrics were computed for each of
the nine hydrological subregions of Pantanal [38],
to evaluate regional discrepancies within the biome
(figure 1(a)).
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Figure 1. (a) Location of Pantanal within Brazil (left) and the nine hydrological subregions with land cover and land use
information from the MapBiomas Collection 5 [61, 62] (right). (b) Subregional ratio between the area burned in 2020 and the
mean annual BA (2001–2019), colors represent: light purple for values⩽ percentile 25, purple for value between percentiles 25
and 75 (included), and dark purple for values >percentile 75; (c) Return period (central map) and annual variability of BA in
each subregion (2001–2020) (associated plots). Each subregion is labelled according to table S1, and values estimated using the
MCD64A1 product.

2.2.2. Heat wave identification
HWwas defined as a period of three or more consec-
utive days with daily Tmax values above predefined
climatological (1981–2010 base period) percentiles

(80th, 90th and 95th) of Tmax for each calendar day
(on a 15 day moving window). Based on this defini-
tion, a secondary metric was computed: the percent-
age of the Pantanal domain under HW conditions
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(% PantanalHW ). This method was already used in
previous studies conducted for the USA [39] and
Brazil [27] and consists of determining the yearly per-
centage of the total Pantanal cells (cellsPANtotal) that
experienced HW conditions:

%PantanalHW =
cellsPANHW

cellsPANtotal
× 100. (1)

Per year, the number of total cells (cellsPANtotal)
is obtained by considering the total number of grid-
points within the region (cellsPANregion) and the
hypothetical total number of days that could exper-
ience HW conditions (cellsPANtime):

cellsPANtotal = cellsPANregion × cellsPANtime. (2)

In our particular case, the cellsPANtime corres-
ponds to the total number of days of the fire season in
the Pantanal (July to October [3]). For instance, for
a particular year, a percentage of 100% indicates that
all the Pantanal experienced HW conditions during
all the fire season days.

2.2.3. Drought conditions
Drought conditions were assessed by analyzing soil
moisture anomaly composites andmonthly standard-
ized precipitation index (SPI) values [40] from 1980
to 2020, using a 6 month accumulation timescale
(SPI-6) and precipitation from ERA5 reanalysis as
input data. SPI is widely used to characterize drought
conditions using a purely meteorological perspect-
ive: it indicates the number of standard deviations
by which the observed precipitation anomaly deviates
from the long-term mean in a particular location.
To better assess the long-term tendencies (quanti-
fied by applying a 1st-degree polynomial regression)
and interannual variability, we further analyze the
temporal evolution of key average meteorological
parameters over the fire seasons between 1980 and
2020.

2.2.4. Relating fires with the heatwave/drought
conditions
We first identified the temporal evolution of each haz-
ard (fire, HW and drought) at the daily scale for the
entire Pantanal allowing the identification of concur-
rent behaviour, i.e. co-occurrence of two or even three
of these hazards. Since the Brazilian Pantanal is quite
large, we also analyzed the co-occurrence of the mul-
tiple hazards for each one of the nine hydrological
subregions. During the fire season, we calculated, at
the subregional level, the percentage of the BA dur-
ing the identified hot periods (HPs), defined here as
consecutive HWs separated by days with a short heat-
stress relief and under drought conditions.

3. Results

3.1. The 2020 fire season in perspective
The P20Fs show an increase in BA for almost all sub-
regions ranging from ∼60% to 1190% of the histor-
ical mean value (figure 1(b)). Higher ratios are found
in the northern subregions, namely São Lourenço
(II) and Cuiabá (IV), which burned ∼65% and
55% of their area in 2020 (table S1 available online
at stacks.iop.org/ERL/17/015005/mmedia), respect-
ively. These values were absolute outliers within the
historical series (figure 1(c)), as so far these subre-
gions had burned a yearly average of ∼5.1% and
5.8% (table S1), respectively. In the P20Fs only one
subregion burned less than its annual average over
the 2001–2019 period: Negro de Mato Grosso do Sul
(VIII); which, along with Miranda (III) and Baixo
Paraguai (V), obtained the lowest ratios to histor-
ical mean values (figure 1(b)). Historically, the north-
ern regions are characterized by lower return peri-
ods, whereas the southern regions burn more regu-
larly (figure 1(c)). However, this historical tendency
was reversed in 2020, whenmost of the BAwas in for-
ested areas of northern Pantanal. Conversely, south-
ern and south-eastern subregions, characterized by
large extents of pasture and grasslands (figure 1(a)),
burned considerably in 2020 but did not reach record
levels. Nevertheless, with the exception of Negro de
Mato Grosso do Sul (VIII), the BA from the P20Fs
went above P75 of the historical time series for all
southern subregions (table S1).

Most subregions in the Pantanal burn within a
4 month period from July to October (figure S1) and,
in this regard, 2020 kept as expected: a steady BA
increase from July to September is seen in Pantanal,
with a peak on 12 September (116 605 ha) and a
secondary observed on 27 September (95 478 ha;
figure S1). Médio Paraguai (VII) and Taquari (IX)
showed the earliest signs of burning in July, while
the remaining subregions burned over August to
October, and solely Baixo Paraguai (V) and Médio
Paraguai (VII) showed considerable BA in the earlier
weeks ofNovember. The latter subregion burned con-
sistently over a period of 5 months, severely contrast-
ingwith its historical serieswhere BAsmainly occur in
September and October. It is also worth noting how
Médio Paraguai (VII) burned very little in previous
years (2016–2018; figure 1(c)).

Around a third of the BAs in the P20Fs had been
undisturbed since 2001, and another 31% burned
only once or twice over the entire study period (table
S1). Of the entire P20Fs, 64% of BAs were areas
not accustomed to regular and systematic burning.
Noteworthy are the cases of Cuiabá (IV) and Médio
Paraguai (VII) with ∼18% and 19%, respectively, of
areas that had not or barely burned within the last
19 years.
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Figure 2. (a) The grey shading shows the fit of a Kernel distribution function for the averaged Tmax anomaly values over the
Pantanal (fire seasons between 1980 and 2020). Vertical colored lines indicate mean Tmax anomaly values during the fire seasons
for specific years. (b) Temporal evolution from 1980 to 2020 of the Tmax average values for the Pantanal and during the fire
season (orange line). The grey shading shows the Tmax variability by highlighting the area delimited by
mean(Tmax) + 2 std(Tmax). (c) Temporal evolution from 1980 to 2020 of the percentage of Pantanal in HW conditions:
% PantanalHW. (d) Temporal evolution from 1980 to 2020 of the SPI-6 and (e) fire season averaged FWI average values for the
Pantanal.

3.2. Compound drought and heatwaves
Results showunprecedented extreme heat conditions,
with Tmax anomalies for the last two fire seasons
over the Pantanal (2019 and 2020) positioned in the
high-end tail of the empirical distribution of aver-
age Tmax anomalies (figure 2(a)). By contrast, the
years 1992, 1990, 1984 are in the low-end tail, as in
general, the years within the first half of the analysis
period. The time series of Tmax (figure 2(b)) is char-
acterized by a pronounced and statistically significant
positive trend of 0.76 ◦C per decade, responsible for
warming throughout the last four decades of ∼3 ◦C.
Accordingly, the spatially averaged Tmax level dur-
ing the P20F season was 34 ◦C, roughly 4 ◦C higher

than the average for the first decade in the 1980s.
The percentage of the Pantanal under HW condi-
tions (figure 2(c)) followed, closely, the Tmax evol-
ution (figure 2(b)). Because of this sharp warming
trend, the spatial and temporal signature of HWs had
marked increase, with unprecedented extreme heat
conditions in 2020 as well. Analyzing the monthly
SPI-6 values from 1980 and 2020 (figure 2(d)), one
concludes that during the 21st centurymost of the fire
seasons were preceded by the occurrence of precip-
itation deficits. As previously described, this period
alsomarks a sharp increase in the Pantanal underHW
conditions (figure 2(b)), indicating that after the turn
of the century the CDHW conditions became more
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Figure 3. (a) Time series from January to December 2020 of daily area-averaged Tmax values for the Pantanal (orange line) and
the respective calendar day climatological (1981–2010 base period) 90th percentile (black line). Yellow bars indicate the daily total
BA recorded (using the ALARMES product). (b) Time series of daily area-averaged precipitation levels (black line) and the
respective anomalies (bars) regarding climatology (1981–2010 base period). (c) Time series of the observed and expected daily
area-averaged evaporative fraction values (orange and yellow line, respectively). The red line indicates the daily accumulated
area-averaged soil moisture anomaly values during 2020. HPs are highlighted in red rectangles in panel (a).

frequent, in particular for 2020. Accordingly, 2020
was also marked by record fire danger (figure 2(e)):
fire season averaged FWI reached values above 30
for the second year in a row. Previously, 2010 held
the highest value, consistent withwidespread drought
conditions in neighboring biomes [41, 42]. Higher
fire danger values over the last two decades strongly
contrast with those of the 20th century, with a signi-
ficant positive trend over the last 40 years.

In general, 2020 was marked by the occurrence of
numerous HW episodes over the Pantanal when the
daily area-averaged Tmax values were considerably
above the expected levels for several periods of three
or more consecutive days (figures 3(a) and S2). Thus,
several HPs were also observed, particularly during
the fire season. The first HP occurred from 26 August
to 1 September, the second from 5 to 20 September
and the third from 25 September to 15 October (red
boxes in figure 3(a)).

Throughout 2020, a temporal match between
the occurrence of HPs and increasing values of BA
(figures 3(a) and S2) was observed. However, it was
during the austral winter and the three considered
HPs that this temporal correspondencewasmore pro-
nounced, indicating a close relationship between the
induced atmospheric heat-stress conditions and the
occurrence of fires. On average, the Tmax value for
the three HPs was 38.5 ◦C, representing a stagger-
ing temperature anomaly of about 5.8 ◦C. In fact, on

1 October (the 6th day of the third HP) the mean
Tmax value reached 41 ◦C, establishing a new record-
breaking level for the region. A very similar value
was observed nine days later on 10 October, defin-
ing this as a period of outstanding extreme heat stress
conditions. During this HP of 21 d, the Tmax val-
ues were on average 6.5 ◦C higher than the expected
mean levels and a total of 983 900 ha burned, a value
that accounts for 25% of the total BA recorded dur-
ing 2020 in Pantanal. The BA recorded over the entire
Pantanal during these three massive HPs accounted
for 55% (60%) of the total 2020 (fire season) BA. In
all subregions, with the exception of Baixo Paraguai,
the BA observed during the three HPs accounted for
more than 50% of the amount from the fire sea-
son. Moreover, in six of the nine subregions, this BA
amount corresponds to more than two-thirds of the
fire season, reaching 95% in Miranda (figure S2).

The months preceding the 2020 fire season were
marked by large deficits in precipitation (figure 2(d)),
within the drought period. During the P20F sea-
son, precipitation levels were lower than expec-
ted, reaching zero or near-zero values for most
of the days (figure 3(b)). Thus, the drought pat-
tern and soil desiccation that initiated during the
first months due to a drier wet season substantially
amplified throughout the following months, leading
to extreme negative anomalies of accumulated soil
moisture (figure 3(c)). These precipitation deficits

6
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Figure 4. (a), (b) and (c) Spatial patterns of the 850 hPa temperature (◦C, shading) and of the 500 hPa geopotential height (gpm,
contours) anomaly composites for the (a) 1st HP (26 August to 1 September), the (b) the 2nd HP (5 to 20 September) and (c) the
3rd HP (25 September to 10 October). (d), (e) and (f) Spatial patterns of the Tmax (◦C, shading) and of the 925 hPa atmospheric
circulation (streamlines) anomaly composites during the three previously considered HP (following the same panel order as in
the first row). (g), (h) and (i) Spatial patterns of the soil moisture (m3

water /m
3
soil) average anomalies during the three previously

considered HP (following the same panel order as in the first and second rows). Contours show the spatial patterns of the SPI-6
values for August (g), September (h) and October (i) 2020.

combined with clear sky conditions that were linked
to large amounts of incoming shortwave radiative
energy at the surface and enhanced diabatic processes
(figure 3(a)), induced large evaporation rates from
the surface to satisfy the high atmospheric demand
for water. This combined process was crucial for the
establishment of the pronounced soil moisture defi-
cits and evaporative stress observed during the P20F
season.

Concurring warm and dry conditions controlled
the partitioning of water and energy fluxes at the sur-
face. The evaporative fraction observed during 2020
followed very closely the precipitation and temper-
ature regimes (figures 3(c) and S2). Several periods
marked by a sharp decrease in the evaporative frac-
tion values were clearly pairedwith dry episodes com-
bined with extremely hot conditions. Thus, negative
anomalies of the evaporative fraction were a constant
presence during 2020 (figures 3(c) and S2). However,
it was during the fire season that the values reached

their minima indicating the presence of a strong
soil moisture-temperature coupling regime (water-
limited) inwhich disproportional surface losses in the
incoming shortwave radiation through upward sens-
ible heat flux allowed a re-amplification of the near-
surface (air) temperatures. The atmospheric cooling
through latent heat fluxwas then suppressed as well as
the capacity of the surface to mitigate the low atmo-
spheric humidity levels.

Finally, we evaluate the synoptic conditions that
triggered the development of such CDHW events
(figure 4). The spatial pattern of the 500 hPa geo-
potential height anomaly field indicates the presence
of concentric positive anomalies during the second
and third HPs over the Pantanal (figures 4 (b) and
(c)). During the first HP, positive anomalies were
also observed. However, they resulted from a north-
west extension of the high-pressure system located
over the South Atlantic Ocean (figure 4(a)). Excep-
tional low-tropospheric heating was also recorded
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as it can be observed by analyzing the 850 hPa
temperature anomaly field. These conditions rep-
resent an enhanced anomalous anticyclonic circu-
lation pattern over the Pantanal. This continental
high-pressure anomaly was widespread and respons-
ible for the air subsidence, causing pronounced adia-
batic heating at the surface, through air compres-
sion, as well as the persistent clear sky conditions
that promoted enhanced diabatic heating at sur-
face (figure S3), low levels of humidity and the
absence of precipitation episodes. Therefore, the ideal
synoptic conditions for strong atmospheric heating
and large evaporation rates were present through-
out the P20F season, in particular during the third
HP, when the Tmax values were, on average, 6 ◦C
above the expected levels (figure 4(f)). Changes in
the low tropospheric wind configuration were also
observed, showing the signature, close to the sur-
face, of this anticyclonic circulation pattern. During
the two first HPs, it can be observed that the wind
pattern presented a higher-than-normal northeast–
southwest orientation (figures 4(d) and (e)). This
anomalous wind pattern was marked by a conflu-
ence throughout a north-south oriented asymptote
towards south Paraguay (during the first HP), and
throughout a northwest-southeast oriented asymp-
tote towards southeastern Brazil (during the second
HP). In fact, by analyzing the mean of the observed
wind configuration recorded during these two peri-
ods (figures S3(a) and (b)) one may conclude that air
masses predominantly from the northeastern regions
moved towards the Pantanal. During the third HP
the 925 hPa wind pattern was substantially differ-
ent (figures 4(f) and S3), showing an anomalous
northwest-southeast orientation over the Pantanal.
Nevertheless, a pronounced confluence similar to the
one observed during the second HP was present.
In fact, the asymptotes marking these regions of
strong confluence were, for all the analyzed HP’s,
oriented towards the regions where the anomalies
of Tmax were higher. This could indicate that the
intense daytime heating in the low troposphere over
these regions caused the lifting of air, imposing pro-
nounced changes in the normal near-surface wind
configuration.

Therefore, during three HPs, the ideal synoptic
conditions, triggering high rates of potential evap-
oration from the occurrence of clear sky conditions
linked to atmospheric subsidence (figure S3), were
observed over central SA, particularly in the Pantanal.
However, due to the desiccated soil already observed
at the time (figure 3(b)), the surface could not meet
such atmospheric water demand. This led to low
rates of actual evaporation and, consequently, to pro-
nounced evaporative stress in the region (figure 3(c))
when extreme low levels of evaporative fraction were
observed during these periods. The spatial pattern of
the SPI-6 values, computed from the months when
these HPs occurred, confirms severe meteorological

drought conditions (figures 4(g)–(i)). An approx-
imately northwest-southeast oriented broad region
extending from northern Bolivia to southeast-
ern Brazil, with Pantanal in its center, endured
pronounced negative SPI-6 levels from August to
October (ranging from −1 to −4). The soil moisture
deficits during the three HPs (figures 4(g)–(i)) con-
firm this situation and are spatially consistent with
the analysis of figure S2 by showing the high potential
of soil desiccation in inducing low levels of evapor-
ative fraction. A similar situation was also observed
southwards, particularly over southern Paraguay and
over northern Argentina. It is noteworthy the spa-
tial match between the regions with strong positive
Tmax anomalies and areaswith negative soilmoisture
anomalies, emphasizing CDHW conditions, unequi-
vocally associated with the land-atmosphere feed-
backs over these SA regions and particularly over all
subregions of the Pantanal (figure S2).

4. Discussion and conclusion

Previous studies for several regions in the globe,
markedly Europe, the Mediterranean, the USA and
Australia, highlighted the key role played by land-
atmosphere feedbacks in the amplification of fire
episodes [43–46]. However, to the best of our know-
ledge, the inter-links played by CDHW and fires in
Brazil remained practically unknown, particularly in
wetlands. Here, we provide evidence that the unpre-
cedented P20Fs were favored by the joint effect of the
observed drought and hot conditions. In fact, most of
the P20Fs occurred simultaneously to CDHW epis-
odes, which have fuelled fires through two distinct
mechanisms, in a cascading effect. First, long-term
precipitation deficits and large evaporation rates were
essential to dry out the soil and vegetation and to
reduce the flood pulse, providing unusual amounts
of fuel to fires. In parallel, soil desiccation also played
a key role in boosting the concurrence of extremely
hot conditions through the establishment of a water-
limited regime and an increase in the sensible heat
flux between the surface and the atmosphere, increas-
ing flammability thresholds.

High-pressure systems are known to favor
CDHW conditions [47], particularly in the Pantanal
[18] and also over surrounding regions such as South-
east Brazil [27]. These high-pressure (anticyclonic)
anomalies are linked to large-scale teleconnections
induced by perturbations of inter-tropical oceanic
modes such as the Madden–Julian oscillation [45]
and the El Niño-Southern oscillation [48]. In the
analyzed CDHW events, positive anomalies of the
500 hPa geopotential heights associated with higher
surface pressure over Central SA contributed to pro-
nounced diabatic heating rates at the surface and
strong atmospheric subsidence, allowing the escala-
tion of temperatures and leveraging high evaporation
rates until the soil dry out.
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The occurrence of concurrent hazards (CDHW-
fires) is widespread over Pantanal, showing however a
great spatial variability in the amount of area affected
by fire in each subregion. The P20F occurred mainly
in forested zones (in the north) and areas that exper-
ienced no flooding and, consequently, had a huge
amount of biomass as fuel, mainly as histosols [3],
while the fires during the 2001–2019 fire seasons ten-
ded to occur in savanna environments (mainly in the
south). This fact reinforces the relative contribution
of climate and fuel as drivers of fire activity [43, 49].
Accordingly, in regions where fuel was not a limiting
factor, fire activity tended to be more vulnerable to
CDHW, increasing flammability and the probability
of high fire spread.

Previous studies have shown that differences in
hydrology modulate nexus between large-scale cli-
matic or geomorphic drivers and vegetation (fuel
availability) in the Pantanal [50]. Therefore, it is
fundamental to consider the hydrological variabil-
ity to understand fire dynamics, through the influ-
ence of the seasonal north-to-south flood-pulse wave
of the Paraguay River, as noted before for Amazo-
nia floodplains [51]. In general, summer rainfall in
surrounding areas of the Pantanal results in a slow-
moving flood pulse from north to south. Due to com-
plex processes of water retention and flow through
floodplain, inundation of the central and southern
Pantanal may occur several months after the rainfall
peaks [48]. Under these circumstances, areas in the
northern Pantanal and areas away from floodplains,
vegetation biomass respond synchronically to rain-
fall [50]. Moreover, as we showed here these areas
have spatial matches between strong positive Tmax
and negative soil moisture anomalies, particularly in
some hydrological regions in the north. On the other
hand, in flooded areas, rainfall and vegetation pro-
ductivity are not clearly correlated [50]. This dynamic
suggests that land-atmosphere physical mechanisms
responsible for triggering the amplification of fires
as we showed here seem to operate more strongly in
the years without large floods, as in 2019 and 2020.
It is likely that these mechanisms do not have the
same importance and synchronicity across the differ-
ent regions of the Pantanal, nor during years of large
floods.

Climate change scenarios from state-of-the-art
models, project significant warming in the Pantanal,
and although changes in the precipitation pattern
are less clear cut than those expected for temperat-
ure [52, 53], projected changes in SA monsoon have
shown a reduction in the length of the rainy season by
the end of the century [54]. Indeed, our results high-
light that the current trend in the Pantanal temper-
ature since 1980 is approximately four times greater
than the average global warming [8]. The fact that
CDHW events are expected to becomemore frequent
and intense worldwide under future climate scenarios
[55] may reinforce the occurrence of large fires as also

shown for other regions [20, 41, 43, 44, 56, 57]. We
are confident that our findings are relevant for other
regions of the world, as some of the driving physical
mechanisms described here, namely those respons-
ible for the CDHWs, also apply across other ecosys-
tems, implying higher flammability conditions and
further efforts for monitoring and predicting such
events.

It is worth mentioning that fire is also influ-
enced by drivers beyond those directly associated
with weather conditions, namely fuel availability and
socio-economic factors. As stated by previous authors
[2, 4, 58], the P20F outbreak is not attributable to
just a single factor, but rather results from a com-
plex interplay among several contributing factors,
including weather conditions, availability of fuel
(vegetation), and human ignition sources (both acci-
dental and intended) [2]. A recent study showed that
human-caused fires exacerbated drought effects on
natural ecosystem during the P20F season, with more
BAs primarily over natural areas [59].

Accordingly, any strategy to mitigate the effects of
wildfires in the Pantanal needs to consider a combin-
ation of these factors and the different characterist-
ics of each one. Accordingly, integrative fire strategies
should require adaptive and social transformative
perspectives [4, 60]. Thus, our results may improve
the assessment of potential high-impact hazards, like
the P20F, helping stakeholders to act upon these com-
plex events.
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