123 research outputs found

    Exploring Nurse Manager Morale Distress: Moving from Collegial Conversations to a Collaborative Research Study

    Get PDF
    Objective/Purpose/Question: The purpose of this study was to address the gap in the literature evaluating moral distress specifically among nurse managers. Aims of the study were to describe the experience of moral distress for inpatient unit nurse managers: specifically, to; identify moral distress root causes for nurse managers, and to evaluate the most troublesome sources of moral distress for nurse managers. The topic of morale distress is frequently studied in the population of clinical providers but not for nurse managers. Information will be shared about how conversations among clinicians, organizational nursing leadership and nursing faculty resulted in a collaborative research study team from Carilion Clinic, University of Virginia and James Madison University. Preliminary results will be shared

    A methodology for validating cloud models using metamorphic testing

    Get PDF
    Cloud computing is a paradigm that provides access to a flexible, elastic and on-demand computing infrastructure, allowing users to dynamically request virtual resources. However, researchers typically cannot experiment with critical parts of cloud systems such as the underlying cloud architecture, resource-provisioning policies and the configuration of resource virtualisation. This problem can be partially addressed through using simulations of cloud systems. Unfortunately, the problem of testing cloud systems is still challenging due to the many parameters that such systems typically have and the difficulty in determining whether an observed behaviour is correct. In order to alleviate these issues, we propose a methodology to semi-automatically test and validate cloud models by integrating simulation techniques and metamorphic testing.This research was partially supported by the Spanish MEC projects TESIS (TIN2009-14312-C02-01) and ESTuDIo (TIN2012-36812-C02-01)

    Monocyte chemoattractant protein-1/CCL2 produced by stromal cells promotes lung metastasis of 4T1 murine breast cancer cells

    Get PDF
    MCP-1/CCL2 plays an important role in the initiation and progression of cancer. Since tumor cells produce MCP-1, they are considered to be the main source of this chemokine. Here, we examined whether MCP-1 produced by non-tumor cells affects the growth and lung metastasis of 4T1 breast cancer cells by transplanting them into the mammary pad of WT or MCP-1−/− mice. Primary tumors at the injected site grew similarly in both mice; however, lung metastases were markedly reduced in MCP-1−/− mice, with significantly longer mouse survival. High levels of MCP-1 mRNA were detected in tumors growing in WT, but not MCP-1−/− mice. Serum MCP-1 levels were increased in tumor-bearing WT, but not MCP-1−/− mice. Transplantation of MCP-1−/− bone marrow cells into WT mice did not alter the incidence of lung metastasis, whereas transplantation of WT bone marrow cells into MCP-1−/− mice increased lung metastasis. The primary tumors of MCP-1−/− mice consistently developed necrosis earlier than those of WT mice and showed decreased infiltration by macrophages and reduced angiogenesis. Interestingly, 4T1 cells that metastasized to the lung constitutively expressed elevated levels of MCP-1, and intravenous injection of 4T1 cells producing a high level of MCP-1 resulted in increased tumor foci in the lung of WT and MCP-1−/− mice. Thus, stromal cell-derived MCP-1 in the primary tumors promotes lung metastasis of 4T1 cells, but tumor cell-derived MCP-1 can also contribute once tumor cells enter the circulation. A greater understanding of the source and role of this chemokine may lead to novel strategies for cancer treatment

    Kombinasi Format Factory, U-lead dan Microsoft Office Powerpoint dalam Upaya Meningkatkan Kualitas Media Pembelajaran

    Get PDF
    Peserta didik mempunyai gaya belajar yang berbeda-beda. Gaya belajar tersebut meliputi auditori, visual dan kinestetik (VAK). Seorang guru harus mampu memenuhi kebutuhan masing-masing gaya belajar peserta didik tersebut. Salah satu cara yang dapat dilakukan adalah dengan menggunakan media pembelajaran berbasis VAK. Media pembelajaran berbasis VAK dapat dipenuhi dengan menyisipkan file video di dalamnya. Selain itu, penggunaan file video sebagai media pembelajaran mendukung implementasi pembelajaran saintifik pada kurikulum 2013. Namun, belum semua guru memiliki kemampuan untuk mengemas file video tersebut dalam bentuk media pembelajaran. Tujuan penelitian ini adalah untuk meningkatkan kemampuan guru-guru di SMA Negeri 1 Teras dan SMA Negeri 1 Boyolali dalam membuat media pembelajaran berbasis VAK dengan kombinasi software Format Factory, U-Lead dan PowerPoint. Hasil penelitian menunjukkan bahwa terjadi peningkatan kemampuan para guru di SMA Negeri 1 Teras dan SMA Negeri 1 Boyolali dalam membuat media pembelajaran. Peningkatan kemampuan guru-guru tersebut berada di atas target yang direncanakan. Rerata peningkatan kemampuan guru-guru di SMA Negeri 1 Teras 7,87% di atas target, sedangkan di SMA Negeri 1 Boyolali 9,58% di atas target. Kata kunci: Media Pembelajaran, Format Factory, U-Lead, PowerPoint Students have different learning styles. Learning styles include visual learners, auditory learners, and kinesthetic learners. A teacher must be able to fulfill the needs of individual students\u27 learning styles. One way that can be applied is using Visual, Audio and Kinesthetic (VAK) learning media based. VAK-learning media based can be created by inserting video files on it. In addition, using video file as a learning media can support the implementation of scientific learning on the 2013 curriculum. However, not all teachers have the ability to use video files into a learning media. The purpose of this study is to improve the teachers\u27 ability at SMA Negeri 1 Teras and SMAN 1 Boyolali on making VAK-learning media based with a combination of Format Factory, U-Lead and PowerPoint software. The results showed that the teachers\u27 ability on making VAK-learning media based was increased. Increased the teachers\u27 ability was above planned target score. The mean score of the teachers\u27 ability at SMA Negeri 1 Teras 7.87% above the target, while at SMAN 1 Boyolali 9.58% above the target

    A Test of Highly Optimized Tolerance Reveals Fragile Cell-Cycle Mechanisms Are Molecular Targets in Clinical Cancer Trials

    Get PDF
    Robustness, a long-recognized property of living systems, allows function in the face of uncertainty while fragility, i.e., extreme sensitivity, can potentially lead to catastrophic failure following seemingly innocuous perturbations. Carlson and Doyle hypothesized that highly-evolved networks, e.g., those involved in cell-cycle regulation, can be resistant to some perturbations while highly sensitive to others. The “robust yet fragile” duality of networks has been termed Highly Optimized Tolerance (HOT) and has been the basis of new lines of inquiry in computational and experimental biology. In this study, we tested the working hypothesis that cell-cycle control architectures obey the HOT paradigm. Three cell-cycle models were analyzed using monte-carlo sensitivity analysis. Overall state sensitivity coefficients, which quantify the robustness or fragility of a given mechanism, were calculated using a monte-carlo strategy with three different numerical techniques along with multiple parameter perturbation strategies to control for possible numerical and sampling artifacts. Approximately 65% of the mechanisms in the G1/S restriction point were responsible for 95% of the sensitivity, conversely, the G2-DNA damage checkpoint showed a much stronger dependence on a few mechanisms; ∼32% or 13 of 40 mechanisms accounted for 95% of the sensitivity. Our analysis predicted that CDC25 and cyclin E mechanisms were strongly implicated in G1/S malfunctions, while fragility in the G2/M checkpoint was predicted to be associated with the regulation of the cyclin B-CDK1 complex. Analysis of a third model containing both G1/S and G2/M checkpoint logic, predicted in addition to mechanisms already mentioned, that translation and programmed proteolysis were also key fragile subsystems. Comparison of the predicted fragile mechanisms with literature and current preclinical and clinical trials suggested a strong correlation between efficacy and fragility. Thus, when taken together, these results support the working hypothesis that cell-cycle control architectures are HOT networks and establish the mathematical estimation and subsequent therapeutic exploitation of fragile mechanisms as a novel strategy for anti-cancer lead generation

    Trichomonas vaginalis: Clinical relevance, pathogenicity and diagnosis

    Get PDF
    Trichomonas vaginalis is the etiological agent of trichomoniasis, the most prevalent non-viral sexually transmitted disease worldwide. Trichomoniasis is a widespread, global health concern and occurring at an increasing rate. Infections of the female genital tract can cause a range of symptoms, including vaginitis and cervicitis, while infections in males are generally asymptomatic. The relatively mild symptoms, and lack of evidence for any serious sequelae, have historically led to this disease being under diagnosed, and under researched. However, growing evidence that T. vaginalis infection is associated with other disease states with high morbidity in both men and women has increased the efforts to diagnose and treat patients harboring this parasite. The pathology of trichomoniasis results from damage to the host epithelia, caused by a variety of processes during infection and recent work has highlighted the complex interactions between the parasite and host, commensal microbiome and accompanying symbionts. The commercial release of a number of nucleic acid amplification tests (NAATs) has added to the available diagnostic options. Immunoassay based Point of Care testing is currently available, and a recent initial evaluation of a NAAT Point of Care system has given promising results, which would enable testing and treatment in a single visit

    Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although lung cancer is among the few malignancies for which we know the primary etiological agent (i.e., cigarette smoke), a precise understanding of the temporal sequence of events that drive tumor progression remains elusive. In addition to finding that cigarette smoke (CS) impacts the functioning of key pathways with significant roles in redox homeostasis, xenobiotic detoxification, cell cycle control, and endoplasmic reticulum (ER) functioning, our data highlighted a defensive role for the unfolded protein response (UPR) program. The UPR promotes cell survival by reducing the accumulation of aberrantly folded proteins through translation arrest, production of chaperone proteins, and increased degradation. Importance of the UPR in maintaining tissue health is evidenced by the fact that a chronic increase in defective protein structures plays a pathogenic role in diabetes, cardiovascular disease, Alzheimer's and Parkinson's syndromes, and cancer.</p> <p>Methods</p> <p>Gene and protein expression changes in CS exposed human cell cultures were monitored by high-density microarrays and Western blot analysis. Tissue arrays containing samples from 110 lung cancers were probed with antibodies to proteins of interest using immunohistochemistry.</p> <p>Results</p> <p>We show that: 1) CS induces ER stress and activates components of the UPR; 2) reactive species in CS that promote oxidative stress are primarily responsible for UPR activation; 3) CS exposure results in increased expression of several genes with significant roles in attenuating oxidative stress; and 4) several major UPR regulators are increased either in expression (i.e., BiP and eIF2α) or phosphorylation (i.e., phospho-eIF2α) in a majority of human lung cancers.</p> <p>Conclusion</p> <p>These data indicate that chronic ER stress and recruitment of one or more UPR effector arms upon exposure to CS may play a pivotal role in the etiology or progression of lung cancers, and that phospho-eIF2α and BiP may have diagnostic and/or therapeutic potential. Furthermore, we speculate that upregulation of UPR regulators (in particular BiP) may provide a pro-survival advantage by increasing resistance to cytotoxic stresses such as hypoxia and chemotherapeutic drugs, and that UPR induction is a potential mechanism that could be attenuated or reversed resulting in a more efficacious treatment strategy for lung cancer.</p

    Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.Peer reviewe
    corecore