99 research outputs found

    Management factors that influence farm profits in southwest Illinois : a study based on records from more than a hundred farms in the wheat and dairy area neighboring St. Louis

    Get PDF
    Cover title.Includes bibliographical references

    Effects of large-scale heathland management on thermal regimes and predation on adders Vipera berus

    Get PDF
    Management prescriptions for species of conservation concern often focus on creating appropriate habitat conditions, but the spatial scales over which these actions are applied can potentially impact their success. In Northwestern Europe, preventing further loss of lowland heathland through successional changes often involves the mechanical removal of vegetation, creating large blocks of open homogenous habitat. We investigate the influence of this broad-scale habitat management on a heathland specialist, the adder Vipera berus. By deploying temperature loggers and Plasticine adder models in heathland areas with and without complex vegetation cover, we show that (1) cleared areas lack both the temperature variation adders need to thermoregulate effectively and suitable refuges from dangerously high summer temperatures, and (2) attacks by dogs and trampling by grazing livestock are significantly more frequent in cleared areas and closer to footpaths. Habitat management strategies that retain some structural complexity of vegetation within cleared areas, and diverting footpaths away from cleared areas and/or strategic placement of barrier hedging around these areas could potentially reduce the exposure of adders to high predation risk and thermal extremes

    Morphology and foliar chemistry of containerized Abies fraseri (Pursh) Poir. seedlings as affected by water availability and nutrition

    Get PDF
    • We present the results of a two-year (2007–2008) greenhouse study investigating the effect of water availability and nitrogen fertilization on the growth, biomass partitioning, and foliar nutrient content of Abies fraseri (Pursh) Poir. • Fertilizer and moisture content (irrigation) were varied in a factorial experiment combining four levels of irrigation and three levels of fertilization to evaluate growth and foliar nutrient content. In addition, a numerical optimization was used to estimate appropriate levels of each factor necessary to achieve simulated goals for response variables. • Irrigation increased the height growth by 12 to 35% depending on the fertilization treatment (p = 0.0001). Fertilization increased height growth by 10 to 26% (p = 0.02). A similar response was observed for stem diameter growth (SDG). Total biomass accumulation increased as result of positive response of stem and root biomass development, and foliar nitrogen content was positively affected by nitrogen fertilization and negatively affected by irrigation. The numerical optimization for simulated target growth and nitrogen content responses produced levels of input combinations with high desirability factors to achieve the target responses. • These results suggest that nutrient addition is a strong determining factor for early development of this species. The improved growth efficiency in this study is likely attributed to a combination of factors including, improved photosynthetic capacity, decreased stomatal limitations, or increased resource allocation to stems

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Catalysing transdisciplinary synthesis in ecosystem science and management

    No full text
    [Extract] Ten years have elapsed since the publication of the Millennium Ecosystem Assessment (MEA, 2005), which highlighted both the plight of our planet's ecosystems and the attendant threat to the services they provide to humanity. The MEA was a call to action for citizens, governments, industry and scientists to understand why ecosystems are degrading, and to find solutions that are practical and timely in halting the degradation and restoring ecosystem function and service provision. Ecosystem science is at the forefront of developing the required understanding and finding the solutions. We need to find new ways of analysing and synthesising available information to inform policy and action on the ground
    corecore