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53 27 Blackheath Common, 9 = Thursley Common, 10 = Marley Common. Inset shows study region locations 
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55 28 within the UK. 
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51 25 Figure 2 Locations of study heathlands in (a) Norfolk: 1 = Salthouse Heath, 2 = Kelling Heath 1, 3 = Kelling 
52 26 Heath 2, 4 = Holt Lowes, 5 = Buxton Heath, 6 = Horsford Woods and (b) Surrey: 7 = Headley Heath, 8 = 
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3 29 
4 
5 30 Table 1 Attributes of the 10 lowland heathland sites included in this study 
6 

7 31 
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Site Area (ha) 

Grazing intensity 

(livestock ha-1) 

Number 

of models 9 32    
10 Horsford Woods 124 n/a 80 
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53 56 Figure 3 Examples of areas of (a) cleared (a large recently mown area alongside a busy footpath at 
54 57 Blackheath Common) and (b) structurally complex heathland vegetation (Kelling Heath), and (c) a male 
55 58 adder crossing a large mown area (Kelling Heath, April 2015). 

(a) (c) 

(b) 

35 

43 

54 

Buxton Heath 67 0.15 60 

Holt Lowes 50 0.14 70 

Salthouse Heath 95 n/a 90 

Kelling Heath 1 89 n/a 90 

Kelling Heath 2 89 n/a 70 

Marley Common 21 0.14 70 

Thursley Common 325 n/a 60 

Blackheath Common 101 n/a 60 

  Headley Heath 204 n/a 120 
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35 77 Figure 4 Daily cycle of operative temperatures (Te: means per 30 minute interval) on cleared, complex and sheltered microhabitats on heathlands in (a) spring 

36 78 and (b) summer (black horizontal lines indicate adders’ preferred temperature range (Tset) measured in a laboratory thermal gradient by Herczeg et al. (2007) 

37 79 and Lourdais et al. (2013), and red horizontal lines indicate the estimated critical thermal maximum temperature (CTmax) for adders (Brattstrom, 1965; 

38 80 Spellerberg, 1972)), and mean deviations of Te from Tset during the diurnal activity period (08:00-20:00) and the proportion of the activity period in which Te 

39 81 exceeds CTmax in (c) spring and (d) summer. Operative temperature in sheltered areas was significantly lower than in cleared (GLMM post-hoc test, z = - 

40 82 8.259, p < 0.001) and complex areas (z = 9.104, p < 0.001), which were not significantly different from one another (z = 0.788, p = 0.711). 
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2 
3 83 Table 2 Model structures used in the analyses of variation in operative temperatures, the risk of attack 
4 84 on adders and the number of recreational visitors to heaths. 

6 

7 

8 

9 

10 

11 

12 Number of people Poisson (log) Day + Site + Activity 

13 85 
14 
15 86 Table 3 Results of a generalised linear mixed model of variation in operative temperatures (Te) of 
16 87 biophysical models on lowland heaths in different management treatments (cleared, complex, shelter) 

17 88 throughout the day (30 min periods between 08:00 and 20:00) in spring (April) and summer (July). 

19 89 Significant variables are highlighted in bold. 
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103 Figure 5 The proportion of adder models attacked on each of the ten heathland sites and the relative 

54 104 proportion attacked by dogs and birds and trampled by livestock (L = sites with grazing livestock) . The 

55 105 dotted line divides the six Norfolk sites and four Surrey sites. 
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95 

 Model response Distribution Model structure 

Operative temperature (Te) Normal Time of day + Treatment * Season + (1 | Day) + (1 

| Logger ID) + (1 | Site) 

 Attack rate Binomial (logit) Region + Site + Sex + Distance to path * Treatment 

 

 Variable Estimate SE DF T P 

(Intercept) 7.63 1.07 18 7.148 <0.001 

Treatment 0.54 0.08 2322 6.966 <0.001 

Time of day -0.42 0.008 2322 -49.537 <0.001 

Season 17.11 0.19 2206 89.607 <0.001 

Treatment * Season 0.16 0.19 2322 0.805 0.421 

90       

 



56 

57 

58 

59 

60 
 

 

5 
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2 
3 106 Table 4 Results of generalised linear mixed models of the risk of attack of adder models by all predators 
4 107 combined, and attacks by dogs and livestock trampling separately, in different management treatments 

6 108 (cleared and complex) and at different distances from footpaths on lowland heaths. Significant variables 

7 109 are highlighted in bold. 
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 Predator Variable Estimate SE Z P 

 All attacks  
(Intercept) 

 
1.6 

 
0.48 

 
3.36 

 
<0.001 

  Treatment -2.01 0.42 -4.75 <0.001 

  Dist. to path -0.09 0.01 -7.57 <0.001 

  Sex 0.4 0.21 1.89 0.06 

  Treatment * Dist. to path 0.02 0.02 0.96 0.33 

 Dogs  
(Intercept) 

 
1.71 

 
0.49 

 
3.5 

 
<0.001 

  Treatment -0.83 0.56 -1.49 0.14 

  Dist. to path -0.1 0.01 -7.61 <0.001 

  Sex 0.4 0.24 1.64 0.1 

  
Livestock 

Treatment * Dist. to path 

 
(Intercept) 

-0.08 

 
-0.61 

0.04 

 
1.26 

-2.3 

 
-0.49 

0.02 

 
0.63 

  Treatment -0.49 1.05 -0.47 0.64 

  Dist. to path -0.03 0.02 -1.59 0.11 

  Sex -0.78 0.48 -1.62 0.11 

  Treatment * Dist. to path 0.02 0.03 0.55 0.58 
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24 119 Figure 6 The mean (±SE) proportion of adder models (a) attacked, and (b) attacked by dogs, birds and 
25 120 livestock, in cleared and complex areas across 10 heathland sites. 
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48 123 Figure 7 Variation in the risk of attack of model adders by dogs in relation to distance to the nearest 

49 124 footpath, on cleared and complex areas of heathland. Dotted lines indicate 95% confidence intervals. 
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33 144 Figure 8 The mean index of recreational activity at each of the ten heathland sites studied in May 2015 
34 145 and the relative contribution of each of the five constituent components of the index, on each of the 

36 146 sites. The percentage of dogs off-lead is also given for each of the sites where walking with dogs 

37 147 occurred. 
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39 148 
40 

41 149 Table 5 Results of a general linear model of the number of human visitors undertaking different 

activities (see Fig 8) recorded during surveys of recreational activity on 10 lowland heathland sites. 

Significant variables are highlighted in bold. 
   

Variable DF Deviance 
Residual 

DF 

Residual 
P

 
deviance 

   

Day 3 7.211 41 136.896 0.065 

Site 8 79.307 33 57.589 <0.001 
Activity 4 30.118 29 27.471 <0.001 
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4 179 marks from bird attack, and hoof marks from trampling by grazing (e) cattle and (f) pony. 
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43 13 Management prescriptions for species of conservation concern often focus on creating appropriate 
44 
45 14 habitat conditions, but the spatial scales over which these actions are applied can potentially impact 
46 
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15 their success. In Northwestern Europe, preventing further loss of lowland heathland through 

49 

50 16 successional changes often involves the mechanical removal of vegetation, creating large blocks of 
51 
52 17 open homogenous habitat. We investigate the influence of this broad-scale habitat management on a 
53 
54 

18 heathland specialist, the adder Vipera berus. By deploying temperature loggers and Plasticine adder 
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1 

2 
3 19 models in heathland areas with and without complex vegetation cover, we show that (1) cleared areas 
4 
5 

20 lack both the temperature variation adders need to thermoregulate effectively and suitable refuges 

7 

8 21 from dangerously high summer temperatures, and (2) attacks by dogs and trampling by grazing 
9 
10 22 livestock are significantly more frequent in cleared areas and closer to footpaths. Habitat management 
11 
12 

23 strategies that retain some structural complexity of vegetation within cleared areas, and diverting 

14 

15 24 footpaths away from cleared areas and/or strategic placement of barrier hedging around these areas 
16 
17 25 could potentially reduce the exposure of adders to high predation risk and thermal extremes. 
18 
19 
20 

21 26 

22 

23 
24 27 Introduction 
25 
26 

27 

28 28 The physical structure of habitats in anthropogenic landscapes is often dependent on human-directed 
29 
30 

29 disturbance regimes (Faegri, 1988; Lawton, 1999). Management that provides structural complexity 
31 
32 

33 30 can be important for wildlife because heterogeneous habitats typically provide more niches and 

34 

35 31 resources (e.g. Simpson, 1949; Macarthur & Wilson, 1967; Lack, 1969; Bazzaz, 1975), and can 
36 
37 32 benefit both faunal abundance and community diversity (Davidowitz & Rosenzweig, 1998; Tews et 
38 
39 

33 al., 2005). However, the spatial scale at which such management should operate is often unclear. 

41 

42 34 Coarse-filter approaches to vegetation management are often employed to create appropriate 
43 
44 35 conditions for a range of species characteristic of an area (Simberloff, 1998; Groves, 2003; Wiens et 
45 
46 

36 al., 2008). However, such generic management prescriptions can potentially lead to unintended 

48 

49 37 consequences for species of conservation concern (Dolman, Panter & Mossman, 2012). 
50 

51 
52 38 Lowland heathland of north-western Europe developed ~4000 years ago as a result of forest 
53 
54 

39 clearance, and has been maintained since by disturbance regimes including livestock grazing, burning, 
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1 

2 
3 40 turf-cutting and harvesting of heather and bracken (Gimmingham, 1972; Webb, 1998). Over the last 
4 
5 

41 century,  declines  in  these  traditional  land  management  practices  have  resulted  in  successional 

7 

8 42 vegetation  changes  (Skogen,  1987;  Webb,  1998;  Mitchell  et  al.,  2000;  Fagúndez,  2013)  and 
9 
10 43 significant loss and fragmentation of heathland (Rose et al., 2000; Alonso, 2004; Newton et al., 2009). 
11 
12 

44 The UK has ~20% (58 000 hectares) of the remaining lowland heathland in north-western Europe 

14 

15 45 (UK Biodiversity Steering Group, 1995), often occurring in relatively small patches covering tens 
16 
17 46 of hectares. Consequently, it is listed under Annex I of the EU Habitats Directive and a priority habitat 
18 
19 

47 under the UK Biodiversity Action Plan. 
20 
21 
22 

23 48 Mimicking traditional land-use, various management practices have been applied to halt the 
24 
25 49 loss of heathland, including grazing at different stocking rates (Bokdam & Gleichman, 2000; Pakeman 
26 
27 

50 et al., 2003), burning (Hobbs & Gimingham, 1984a, 1984b; Mallik & Gimingham, 1985; Britton et 

29 

30 51 al., 2001), mechanical cutting (Calvo, Tarrega & de Luis, 2002) and turf stripping (Bokdam & 
31 

32 52 Gleichman, 2000). While these modernised management systems can achieve economies of scale and 
33 
34 53 efficiency, they are generally less diverse in terms of disturbance regimes and fine-scale temporal and 
35 
36 

37 54 spatial variability (Webb, 1998), and often reduce the complex structure of vegetation or remove it 

38 

39 55 entirely (Newton et al., 2009; Edgar, Foster & Baker, 2010). However, there has been little 
40 
41 56 investigation of the impacts of these modern management regimes on heathland wildlife. 
42 
43 
44 

45 57 Reptiles can be particularly impacted by changes to habitat structural complexity (Pianka & 
46 

47 58 Pianka, 1970; Huey & Slatkin, 1976). Reductions in vegetation complexity can reduce the availability 
48 
49 59 of locations with differing thermal conditions, making effective thermoregulation more difficult 
50 
51 

60 (Huey & Slatkin, 1976; Row & Blouin-Demers, 2006; Elzer et al., 2013). Habitat simplification can 

53 

54 61 also increase predation risk (or perception of predation risk), by reducing refuge opportunities and/or 
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1 

2 
3 62 increasing encounter rates between predators and prey (Murdoch & Oa, 1975; Gotceitas & Colgan, 
4 
5 

63 1989; Irlandi, 1994). These effects may be especially pronounced for reptiles in temperate climates 

7 

8 64 because they must balance the risk of predation with the need to thermoregulate (often basking in 
9 
10 65 exposed areas) in highly variable thermal conditions (Huey, 1974). Basking poses significant risks to 
11 
12 

66 survival, but capitalising on favourable thermal conditions is vital for energy assimilation and growth 

14 

15 67 (Olsson, Madsen & Shine, 1997; Lourdais et al., 2004; Herczeg et al., 2007). 
16 

17 
18 68 Many lowland heaths are also near to centres of human population and are used as recreational 
19 
20 

69 amenities (Underhill-Day & Liley, 2007; Cordingley et al., 2015). Consequently, they can support 

22 

23 70 high numbers of predators of reptiles, including domestic animals (Phelps, 2004; Underhill-Day, 
24 
25 71 2005; Edgar et al., 2010). 
26 
27 

28 
72 The loss and degradation of lowland heathland has been implicated in historic population 

30 

31 73 declines of adders Vipera berus in the UK (Baker, Suckling & Carey, 2004; Edgar et al., 2010; Gleed- 
32 
33 74 Owens & Langham, 2012). Despite this, the impact of current heathlands management regimes for 
34 
35 

75 adders is poorly understood. Through the deployment of temperature loggers and adder models on 

37 

38 76 heaths across lowland England, we quantify differences in thermal conditions and rates of adder 
39 
40 77 predation, as well as the identity of predators, in areas with differing vegetation structure: either open, 
41 
42 

78 short swards or structurally complex vegetation. 

44 

45 

46 79 
47 

48 

49 
80 Materials & Methods 

51 

52 
53 

81 Measuring the thermal environment 
54 
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55 
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60 

for males and terracotta-coloured for females (Fig. 1). All models had a tapering tail end, a slightly 102 

enlarged head distinct from a thinner neck, with three bends in the body to replicate a typical S-shaped, 103 
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1 

2 
3 82 We  quantified  the  thermal  environment  on  heathlands  by  measuring  operative  environmental 
4 
5 

6 83 temperatures  (Te)  using  temperature  loggers  (Thermochron  i-Button,  Maxim  Integrated)  inside 

7 

8 84 biophysical snake models (Bakken, 1992). The operative temperature is defined as the temperature of 
9 
10 85 an inanimate object of zero heat capacity with the same shape, size and radiative capacity as the focal 
11 
12 

86 animal when exposed to the same microclimate (Bakken & Gates, 1975). Unlike simple measures of 

14 

15 87 air or ground temperatures, operative temperatures integrate heat exchange across multiple pathways 
16 
17 88 (radiation, convection and conduction), and thus reflect the thermal environment available to the study 
18 
19 

89 subject more effectively. 
20 
21 
22 

23 90 The biophysical models used here were constructed to represent adders, and consisted of 40-cm-long 
24 
25 91 copper tubes (wall thickness 1.1 mm, diameter 22 mm) with sealed ends (tight-fitting rubber bungs). 
26 
27 

92 Each temperature logger was positioned at the centre of the model and wrapped in packaging foam so 

29 

30 93 that it was not in contact with the walls of the copper tube. Comparison of the thermal behaviour of a 
31 

32 94 model with that of a fresh snake carcass on a flat exposed concrete surface over a 24 h period revealed 
33 
34 95 very similar temperature ranges (model = 6–33.5oC, snake = 5.3–34oC), very little thermal 
35 
36 

37 96 discrepancy (<0.1oC) and a highly significant correlation between simultaneous readings across this 

38 

39 97 range (r = 0.98, n = 96, p < 0.001). 
40 
41 

42 
98 Estimating rates of snake predation 

44 

45 

46 99 We used artificial model replicas of adders to measure predation rates on heaths. Each model was 
47 
48 100 constructed using ~100 g of non-toxic sculpting clay (Newplast Plasticine; Animation Supplies Ltd, 
49 
50 

101 Worthing, UK) and measured ~35 cm in length and 2 cm in diameter. Grey-coloured clay was used 
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1 

2 
3 104 resting posture. Using a black non-toxic water-based paint marker (Uni POSCA PC-5M; The SQL 
4 
5 

105 Workshop Ltd, Devon, UK), a mid-dorsal zigzag pattern and head markings similar to those of adders 

7 

8 106 were painted onto all models. To reduce the risk of whole models being displaced or carried away by 
9 
10 107 predators, each was secured to the ground using a small, black elastic band at the midpoint of the body 
11 
12 

attached to a concealed peg. Models were inspected for marks left by predators to aid identification 

of the animal responsible; (i) dog attack: identified by canine teeth or claw marks, (ii) avian attack: 

beak or claw marks of birds, or (iii) livestock trampling: hoof marks of ponies or cattle (Appendix 1). 

19 
111 Predators of snakes often direct attacks towards the head, especially in venomous snakes (Wüster et 

20 
21 

22 112 al., 2004; Niskanen & Mappes, 2005), so the position of damage to models was also recorded. 

23 

24 
25 113 Experimental design 
26 
27 

28 
114 The study took place on ten heathland sites in lowland England (Fig. 2; Table 1), all of which were 

30 

31 115 open to public access and managed by modern scrub control regimes. At each site, a study area of ~1 
32 
33 116 ha comprising both cleared and structurally complex areas of vegetation (>40 m2) separated by 
34 
35 

footpaths (Fig. 3a,b) was identified. Cleared areas were characterised by vegetation <10 cm in height 

(in any of five measurements using a ruler along a sampling transect) and contained no tall vegetation. 

Complex areas comprised mosaics of shrub species varying in height and patches of bare ground  <1 
41 
42 

120 m2. Male and female adders were observed basking on or moving through cleared and complex areas 

44 

45 121 at several of the sites (Fig. 3c). 
46 

47 
48 122 To quantify operative temperatures during the period of adder activity, temperature loggers were 
49 
50 

deployed on all six Norfolk sites between 23-30 April (spring season) and 1-7 July (summer season) 

2015. On each site, three loggers (programmed to record temperature every 30 minutes) were placed 

in each of three different microhabitats (i.e. 9 models per site, 54 models in total): ‘cleared’ (exposed 
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1 

2 
3 126 and >20 m from shrubs and trees), ‘complex’ (exposed but <30 cm from vegetative cover) and 
4 
5 

127 ‘shelter’ (completely concealed beneath vegetation at a depth of 30 cm). The biophysical models 

7 

8 128 containing loggers were in contact with the ground for their entire length and oriented on a north- 
9 
10 129 south axis to maximise exposure to the midday sun, replicating adder behaviour. 
11 
12 
13 

14 130 Plasticine adder models were deployed during the adder mating season (Norfolk: 1-14 May; Surrey: 

15 

16 131 18-31 May). In total, 770 models (385 of each sex) were deployed. At each site, the number of models 
17 
18 132 ranged from 60 to 90, and equal numbers were deployed in cleared and complex areas. Models were 
19 
20 

133 deployed singly at ground-level and at 15 m intervals (alternating between male and female models) 

22 

23 134 along one transect in each study area. Transects ranged from 5 m to 30-50 m from footpaths, with the 
24 
25 135 range of distances being equal in cleared and complex areas at each site. In complex areas, all models 
26 
27 

were positioned close to (<30 cm) vegetative cover (e.g. gorse or heather stands). On one of the sites 

(Headley Heath), in addition to cleared and complex areas, 20 models were deployed in each of two 

‘wildlife havens’ (areas of approximately 50 m2 enclosed by gorse). 

 

At each site and in each treatment, all models were deployed on the same day and 

subsequently relocated and checked for damage five times in 48 hr intervals (i.e. deployed for 10 

days in total). For each damaged model, the location (cleared or complex area), distance to the 
41 
42 

142 nearest footpath, animal responsible for damage, and the most intensively damaged body section 

44 
(the full body length was divided into equal thirds: head and neck, mid-body, tail-end) were 

 

recorded. Damaged models were removed and not replaced. 
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then used to examine attacks by (1) all predators, (2) dogs, and (3) livestock (too few attacks by avian 166 
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1 

2 
3 145 Estimating levels of recreational activity 
4 
5 

6 
7 146 During each of the five spring (May) surveys of adder models on each site, the number of 
8 
9 

147 visitors  was also  recorded. Each survey took  place between  08:00  and  18:00  and  one of the five 
10 
11 

12 148 surveys on each site was undertaken on a weekend. At each site, one 200 to 400 m-long transect was 
13 

14 149 established along existing footpaths, providing good visibility and coverage of the entire study area 
15 
16 150 containing adder models. Surveys consisted of walking the transect for 0.5 h recording each person 
17 
18 

151 entering the study area, along with their activity: walking (W), dog walking (DW), running (R), 

20 

21 152 cycling (C), or horse riding (HR). Each dog was recorded as either on or off the lead (L/NL), and each 
22 
23 153 individual was recorded only once per survey. These counts were used to generate ‘human activity 
24 
25 

154 indices’ for each site by dividing total count (of each category and all categories combined) by the 

27 

28 155 number of surveys. 
29 

30 

31 
156 Analysis 

33 

34 

35 157 Variation in the operative temperatures recorded by temperature loggers every 30 minutes was 
36 
37 158 explored using a generalised linear mixed model (GLMM using the R package ‘lme4’ (Bates et al. 
38 
39 

40 159 2013)) with time of day (hour), treatment (cleared, complex or sheltered), season (spring or summer), 

41 

42 160 and their interactions, as predictor variables, and day, site and logger ID as random factors (Table 2). 
43 
44 161 A post-hoc test (using R package ‘multcomp’ (Hothorn et al. 2017)) was used to examine 
45 
46 

162 temperature variation within treatment. The effects of habitat structure on adder model attacks was 

48 

49 163 explored in a GLMM with a binomial error structure and model fate (attacked or not attacked) as the 
50 
51 164 response variable, treatment (cleared or complex) and distance to footpath and their interaction as 
52 
53 

165 predictor variables, and site as a random effect (Table 2). Separate models with this structure were 
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difference in temperatures between treatments was similar across the seasons, overall temperatures 183 

were significantly higher in summer (July) than spring (April) (Table 3). Consequently, while mean 184 

spring temperatures in sheltered areas remained well below adders’ preferred range (Tset: measured 185 

in a laboratory thermal gradient by Herczeg et al., 2007 & Lourdais et al., 2013), temperatures in 186 

structurally complex and cleared areas approached Tset (deviation < 5oC) for 5.5 hours of the day 187 
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1 

2 
3 167 predators were recorded to allow analysis). We examined the relationship between the index of human 
4 
5 

6 168 activity (log10 

7 

transformed people survey-1) and model attack rate (mean proportion of models 

8 169 damaged  in  the  two  survey  periods)  across  the  10  sites  using  linear  regression.  Variation  in 
9 
10 170 recreational activity was explored using a general linear model (GLM) with a Poisson error structure 
11 
12 

and log link function, with number of people as the response variable, and day, site and activity as 

predictor variables (Table 2). To test the overall effects of factors, we used Chi-squared tests to 

compute analysis of deviance tables for model fit. 

20 
174 In all models, non-significant (P > 0.05) variables were removed by sequential backwards 

22 

23 175 deletion (although for completeness, their estimates and associated probabilities in maximal models 
24 
25 176 are also reported). All analyses were carried out in R 3.4.2 (R Core Team 2017). 
26 
27 
28 

29 177 

30 

31 
32 178 Results 
33 
34 

35 

36 
179 Thermal variation across heathland sites 

38 

39 

40 180 Operative temperatures (Te) on heaths varied significantly throughout the day and with habitat 
41 
42 181 structure (Table 3; Fig. 4). Temperature loggers in shelter beneath vegetation had mean temperatures 
43 
44 

182 up to 20oC cooler than those exposed within structurally complex and cleared areas and, although the 45 
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1 

2 
3 188 (Figure 4). In the summer period, Te in both cleared and complex areas greatly exceeded adders’ 
4 
5 

6 189 critical  thermal  maximum  temperature  (CTmax:  Brattstrom,  1965;  Spellerberg,  1972)  for  the 

7 

8 190 majority of adders’ activity period (Fig. 4), while those in sheltered areas remained well below CTmax 
9 
10 191 and only approached Tset (deviation < 5oC) for four hours of the day (Fig. 4). 
11 
12 
13 

14 192 Attack rates between sites 

15 

16 
17 193 Of the 770 model adders, 203 (26.4%) were damaged. The rate of damage to models ranged from 
18 
19 

194 6.3% at Buxton Heath to 68.6% of models at Marley Common (Table 4; Fig. 5). 

21 

22 
23 195 Effects of habitat complexity and distance to footpaths on attack rates 
24 
25 
26 

27 196 Significantly more models were damaged in cleared than in structurally complex areas on heaths (Fig. 

28 

29 197 6a) and attacks were significantly more frequent closer to footpaths (Table 4). Overall, damage rates 
30 
31 198 were ~3 times more frequent in cleared areas but the relative impact of different predators varied with 
32 
33 

199 habitat structure; the few recorded bird attacks occurred in both cleared and complex areas and similar 

35 

36 200 numbers of models were trampled by livestock in cleared and complex areas (Fig. 6b, Table 4). 
37 
38 201 However, the risk of dog attack was significantly greater in cleared than complex areas, with 79% of 
39 
40 

dog attacks occurring in cleared areas (Fig. 6b), and in areas closer to footpaths (Table 4). The risk of 

dog attack close to footpaths (<20 m) was significantly greater, and attacks occurred over a greater 

range of distances (up to 40 m) from footpaths, in cleared than complex areas (Fig. 7). 

41 202 
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43 203 
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45 204 
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1 

2 
3 205 Recreational activity and attack rates 
4 
5 
6 

7 206 The human activity index varied significantly between sites, as did the relative amounts of the five 
8 

9 207 recreational activities (Fig. 8; Table 5). Dog walking was the most frequently recorded recreational 
10 
11 

208 activity at most sites and virtually all dogs seen were off the lead (Fig. 8). 
12 
13 
14 

15 209 Animals responsible for damage to models 
16 

17 
18 210 While five bird attacks were recorded across three sites, dog attacks and trampling by grazing 
19 
20 

211 livestock constituted the great majority of damage to models (Fig. 5). The most heavily damaged 

22 

23 212 part of the model varied among animals responsible (x2 = 9.11, d.f. = 2, P = 0.01; Fig. 9). In models 
24 
25 213 attacked by dogs, significantly more damage was sustained to the head and neck (x2 = 32.70, d.f. 
26 
27 

214 = 2, P < 0.001), while trampling by livestock caused similar damage among body sections (x2 = 

29 

30 215 8.14, d.f. = 2, P = 0.54). 
31 

32 

33 216 
 

 

Discussion 
 

 

While scrub control is an important component of heathland management and 

conservation,  large-scale  reduction  in  complex  vegetation  can  have  potentially   important 

45 
220 consequences for adder thermoregulation and survival. In cleared areas in which management has 

46 
47 

48 221 reduced vegetation height and structural complexity over large areas, thermal conditions were harsher 

49 

50 222 and adder models were subject to an increased risk of predation. Our study suggests the greatest direct 
51 
52 223 threat to survival on open-access heaths is posed by domestic dogs, and attack rates were greater in 
53 
54 

224 sites with more recreational activity and in areas closer to footpaths. Although maintaining adder 
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1 

2 
3 225 populations is often an aim of this type of heathland management, these findings suggest that the scale 
4 
5 

226 at which these operations take place may have unintended impacts on adder populations in the short 

7 

8 227 and long-term (Martin & Lopez, 1999; Webb & Whiting, 2005). Efforts to retain habitat structural 
9 
10 228 complexity and moderate the impact of recreational activity on open access heaths are likely to be of 
11 
12 

229 great importance to the conservation of adders on heathlands. 

14 

15 

16 230 In thermally suboptimal conditions, structurally complex vegetation can facilitate adder 
17 
18 231 thermoregulation by enabling effective energy assimilation (Huey, 1974; Huey & Slatkin, 1976), and 
19 
20 

232 our biophysical models showed that temperatures deviated least from adders’ preferred range in 

22 

23 233 complex areas. The effect is especially important during spring when, following emergence from 
24 
25 234 hibernation, adders must bask in direct sunlight for long periods to achieve preferred body 
26 
27 

temperatures. However, on hot summer days the effect of habitat structural complexity is more 

immediate, as ground temperatures in areas without shelter exceeded adders’ critical thermal 

maximum for much of the day, reaching over 50oC. While reptiles are well adapted behaviourally and 

34 238 physiologically to cope with thermal variability (Huey, Losos & Moritz, 2010), extreme high ground 
35 
36 

37 239 temperatures on heaths in summer months represent a potentially lethal risk to adders of overheating, 

38 

39 240 particularly while mate-seeking, foraging or dispersing. Where vegetation on heaths is reduced to 
40 
41 241 large areas of short vegetation, adders are unable to thermoregulate by seeking refuge from the sun 
42 
43 

242 (Huey, 1974). 

45 

46 

47 243 Structurally simplified areas of heaths also produced significantly higher attack rates of adder 
48 
49 244 models than in complex areas. The detection of snakes by other animals is likely to be primarily visual, 
50 
51 

245 and habitat simplification could reduce concealment of adders (Isbell, 2006; Stevens, 2009; Allen et 

53 

54 246 al., 2013), in addition to facilitating mammalian movement across heathlands (e.g. Murison et al., 
55 
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of adders into remaining patches of complex vegetation or adjacent land could, in turn, lead to 265 

increased predation risk if there is an immediate increase in adder density in these areas. In 266 

addition, scrub clearance can cause significant habitat fragmentation on heaths, and simplified areas 267 
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1 

2 
3 247 2007). Although not measurable in our experiments, adders may also be less able to escape from 
4 
5 

248 predators in cleared areas, and thus be less likely to survive an attack. 

7 

8 

9 249 Overall, attack rates on our models were high, with 26% being damaged during their 10 day 
10 
11 

250 deployment. While live adders may be likely to seek cover when dogs are nearby, high numbers of 
12 
13 

14 251 adder bites of dogs have been documented in the UK (Reading et al., 1995; Sutton, Bates & Campbell, 

15 

16 252 2011) and elsewhere in Europe (Kangstrom, 1989; Lervik, Lilliehöök & Frendin, 2010), and there are 
17 
18 253 numerous reports of adder bites to the legs of cattle, ponies and sheep (Luckham, 1944; Prestt, 1971; 
19 
20 

254 Arbuckle & Theakston, 1992). Conversations with dog walkers during fieldwork revealed accounts 

22 

23 255 of dogs attacking and killing adders and JWH has previously found the carcases of adders showing 
24 
25 256 injuries apparently consistent with dog attack and trampling by livestock (Appendix 2). While the 
26 
27 

immobility of Plasticine models may have led to overestimation of the true frequency of predation, 

our estimate of avian predation rates is similar to that reported on heathlands by Wüster et al. (2004), 

and the fact that dogs attacked predominantly the head or tail regions of models [reflecting predator 

34 260 behaviour in other studies (Smith, 1973; Brodie, 1993; Wüster et al., 2004)] suggests they were treated 
35 
36 

37 261 as if they were real snakes, and were not merely ‘tasting’ the Plasticine as some rodents do (Madsen, 

38 

39 262 1987). 
40 
41 

42 
263 Hostile conditions could result in cleared areas on heaths being actively avoided by 

44 

45 264 adders, which may further reduce habitat availability for this declining species. The movement 
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1 

2 
3 268 that are large relative to the size of the site, or represent a high proportion of the site, have the potential 
4 
5 

269 to seriously inhibit adder movement (Fahrig, 2007; Croak, Webb & Shine, 2013). 

7 

8 

9 270 
10 
11 

12 
271 Implications for heathland management 

14 

15 

16 272 The findings of this study suggest that, where heathland management is necessary to maintain 
17 
18 273 mid-successional stage habitat, strategies that retain some habitat structural complexity within 
19 
20 

274 managed areas should be included to reduce detrimental effects on adders. Ideally, the 

22 

23 275 simultaneous removal of all vegetation cover across a site, or substantial areas of it, should 
24 
25 276 be avoided, and the selection of sections of a site to be cut should target areas where scrub 
26 
27 

encroachment is most severe, and avoid important habitat features for adders, such as 

hibernacula and foraging areas. Cutting and clearing of vegetation should ideally be 

conducted in narrow strips, and/or in phased cutting of many small (rather than fewer, 

34 
280 large) management plots, as this is likely to have less severe impacts on adders, and the 

35 
36 

37 281 resulting more connected mosaic of different vegetation types and age classes can provide a 

38 

39 282 greater spectrum of discrete resources for adders and other important heathland taxa. 
40 
41 283 Where mechanised cutting makes such small-scale management more difficult to achieve, 
42 
43 

284 opportunities for hand cutting of vegetation may be important to consider, where feasible. 

45 

46 285 Finally, where the conservation of adders is a primary objective, avoiding the use of 
47 
48 286 livestock grazing as the means of habitat management will likely reduce the risk of 
49 
50 

disturbance and trampling. Our findings add to evidence that the generic, landscape-scale 

policy of grazing management on heathland can be harmful to many species of conservation 

concern (Lindenmayer & Fischer, 2006; Newton et al., 2009; Reading & Jofré, 2015; Reading & 
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1 

2 
3 290 Jofré, 2016). The apparent threat to adders posed by dogs on heathlands highlights a 
4 
5 

291 management issue for reconciling the recreational needs of visitors with the requirements of 

7 

8 292 species of conservation interest. The Countryside Rights of Way Act 2000 (CRoW Act) is based 
9 
10 293 on the notion of responsible access, with a provision for dogs to be kept on a fixed lead during 
11 
12 

the ground nesting bird season (generally 1 March to 31 July). This period coincides with the 

adders’ breeding season, and our findings strongly support the need for such a provision. 

However, alternative options to manage, or manipulate, recreational activity may be more 

19 
297 beneficial, and could include diverting footpaths and strategic placement of impenetrable 

20 
21 

22 298 barriers (e.g. gorse Ulex europaeus) to protect sensitive areas, as already occurs on some 

23 

24 299 heaths (JWH, pers. obs.). Targeted vegetation clearance may help to dissuade adders from 
25 
26 300 specific areas, such as access points, car parks, or dedicated off-lead areas for dogs. 
27 
28 

301 However, this should be weighed against the value of public engagement on peri-urban or urban 

30 

31 302 green spaces, which has produced tangible conservation benefits even for venomous snakes 
32 
33 303 (Bonnet et al., 2016). For people and adders, and towards the broader aim of coexisting with 
34 
35 

304 wildlife, educational activities, informative (rather than warning) sign boards, and other 
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