7 research outputs found

    Observational Constraints on the Modified Gravity Model (MOG) Proposed by Moffat: Using the Magellanic System

    Full text link
    A simple model for the dynamics of the Magellanic Stream (MS), in the framework of modified gravity models is investigated. We assume that the galaxy is made up of baryonic matter out of context of dark matter scenario. The model we used here is named Modified Gravity (MOG) proposed by Moffat (2005). In order to examine the compatibility of the overall properties of the MS under the MOG theory, the observational radial velocity profile of the MS is compared with the numerical results using the χ2\chi^2 fit method. In order to obtain the best model parameters, a maximum likelihood analysis is performed. We also compare the results of this model with the Cold Dark Matter (CDM) halo model and the other alternative gravity model that proposed by Bekenstein (2004), so called TeVeS. We show that by selecting the appropriate values for the free parameters, the MOG theory seems to be plausible to explain the dynamics of the MS as well as the CDM and the TeVeS models.Comment: 14 pages, 3 Figures, accepted in Int. J. Theor. Phy

    DYNAMIC ASSET ALLOCATION AND CONSUMPTION CHOICE IN INCOMPLETE MARKETS *

    No full text
    We study the optimal investment and consumption problem of a CRRA investor when the drift and volatility of the stock are driven by a correlated factor. The myopic and non-myopic components of the optimal portfolio process are characterised in terms of the market price of traded and non-traded risk of the minimax martingale measure. We find that the optimal policies depend crucially on the nature of the agent, aggressive versus conservative, and the market incompleteness, improving versus deteriorating investment opportunities. Furthermore, we show that the original problem cannot be decomposed into a pure consumption and a pure terminal wealth problem, unless the market is complete. Copyright Blackwell Publishing Ltd/University of Adelaide and Flinders University 2005..

    Hamilton–Jacobi–Bellman Equations

    No full text
    International audienceIn this chapter we present recent developments in the theory of Hamilton–Jacobi–Bellman (HJB) equations as well as applications. The intention of this chapter is to exhibit novel methods and techniques introduced few years ago in order to solve long-standing questions in nonlinear optimal control theory of Ordinary Differential Equations (ODEs)

    Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout

    Get PDF
    International audienceThe Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based very-high-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possible by using tens of imaging Cherenkov telescopes of three successive sizes. They will be arranged into two arrays, one per hemisphere, located on the La Palma island (Spain) and in Paranal (Chile). We present here the optimised and final telescope arrays for both CTA sites, as well as their foreseen performance, resulting from the analysis of three different large-scale Monte Carlo productions

    Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation

    Get PDF
    The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for γ astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of γ cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of γ absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z=2 and to constrain or detect γ halos up to intergalactic-magnetic-field strengths of at least 0.3 pG . Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from γ astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of γ cosmology

    Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout

    No full text
    corecore