16 research outputs found

    The (1+1)-dimensional Massive sine-Gordon Field Theory and the Gaussian Wave-functional Approach

    Full text link
    The ground, one- and two-particle states of the (1+1)-dimensional massive sine-Gordon field theory are investigated within the framework of the Gaussian wave-functional approach. We demonstrate that for a certain region of the model-parameter space, the vacuum of the field system is asymmetrical. Furthermore, it is shown that two-particle bound state can exist upon the asymmetric vacuum for a part of the aforementioned region. Besides, for the bosonic equivalent to the massive Schwinger model, the masses of the one boson and two-boson bound states agree with the recent second-order results of a fermion-mass perturbation calculation when the fermion mass is small.Comment: Latex, 11 pages, 8 figures (EPS files

    The Non-Trivial Effective Potential of the `Trivial' lambda Phi^4 Theory: A Lattice Test

    Full text link
    The strong evidence for the `triviality' of (lambda Phi^4)_4 theory is not incompatible with spontaneous symmetry breaking. Indeed, for a `trivial' theory the effective potential should be given exactly by the classical potential plus the free-field zero-point energy of the shifted field; i.e., by the one-loop effective potential. When this is renormalized in a simple, but nonperturbative way, one finds, self-consistently, that the shifted field does become non-interacting in the continuum limit. For a classically scale-invariant (CSI) lambda Phi^4 theory one finds m_h^2 = 8 pi^2 v^2, predicting a 2.2 TeV Higgs boson. Here we extend our earlier work in three ways: (i) we discuss the analogy with the hard-sphere Bose gas; (ii) we extend the analysis from the CSI case to the general case; and (iii) we propose a test of the predicted shape of the effective potential that could be tested in a lattice simulation.Comment: 22 pages, LaTeX, DE-FG05-92ER40717-

    Restoration and Dynamical Breakdown of the \phi \to -\phi Symmetry in the (1+1)-dimensional Massive sine-Gordon Field Theory

    Full text link
    Within the framework of the Gaussian wave-functional approach, we investigate the influences of quantum and finite-temperature effects on the Z_2-symmetry(\phi \to -\phi) of the (1+1)-dimensional massive sine-Gordon field theory. It is explicitly demonstrated that by quantum effects the Z_2-symmetry can be restored in one region of the parameter space and dynamically spontaneously broken in another region. Moreover, a finite-temperature effect can further restore the Z_2-symmetry only.Comment: 12 pages, 14 figures (EPS

    Search for gluinos in events with an isolated lepton, jets and missing transverse momentum at √s=13 TeV with the ATLAS detector

    Get PDF
    The results of a search for gluinos in final states with an isolated electron or muon, multiple jets and large missing transverse momentum using proton–proton collision data at a centre-of-mass energy of √s=13 TeV are presented. The dataset used was recorded in 2015 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 3.2 fb−1. Six signal selections are defined that best exploit the signal characteristics. The data agree with the Standard Model background expectation in all six signal selections, and the largest deviation is a 2.1 standard deviation excess. The results are interpreted in a simplified model where pair-produced gluinos decay via the lightest chargino to the lightest neutralino. In this model, gluinos are excluded up to masses of approximately 1.6 TeV depending on the mass spectrum of the simplified model, thus surpassing the limits of previous searches

    Gaussian effective potential for the U(1) Higgs model

    No full text
    corecore