119 research outputs found

    Associations of Prenatal Nicotine Exposure and the Dopamine Related Genes ANKK1 and DRD2 to Verbal Language

    Get PDF
    Language impairment (LI) and reading disability (RD) are common pediatric neurobehavioral disorders that frequently co-occur, suggesting they share etiological determinants. Recently, our group identified prenatal nicotine exposure as a factor for RD and poor reading performance. Using smoking questionnaire and language data from the Avon Longitudinal Study of Parents and Children, we first determined if this risk could be expanded to other communication disorders by evaluating whether prenatal nicotine exposure increases risk for LI and poor performance on language tasks. Prenatal nicotine exposure increased LI risk (OR = 1.60; p = 0.0305) in a dose-response fashion with low (OR = 1.25; p = 0.1202) and high (OR = 3.84; p = 0.0002) exposures. Next, hypothesizing that the effects of prenatal nicotine may also implicate genes that function in nicotine related pathways, we determined whether known nicotine dependence (ND) genes associate with performance on language tasks. We assessed the association of 33 variants previously implicated in ND with LI and language abilities, finding association between ANKK1/DRD2 and performance on language tasks (p≤0.0003). The associations of markers within ANKK1 were replicated in a separate LI case-control cohort (p<0.05). Our results show that smoking during pregnancy increases the risk for LI and poor performance on language tasks and that ANKK1/DRD2 contributes to language performance. More precisely, these findings suggest that prenatal environmental factors influence in utero development of neural circuits vital to language. Our association of ANKK1/DRD2 further implicates the role of nicotine-related pathways and dopamine signaling in language processing, particularly in comprehension and phonological memory

    Evoked itch perception is associated with changes in functional brain connectivity

    Get PDF
    Chronic itch, a highly debilitating condition, has received relatively little attention in the neuroimaging literature. Recent studies suggest that brain regions supporting itch in chronic itch patients encompass sensorimotor and salience networks, and corticostriatal circuits involved in motor preparation for scratching. However, how these different brain areas interact with one another in the context of itch is still unknown. We acquired BOLD fMRI scans in 14 atopic dermatitis patients to investigate resting-state functional connectivity before and after allergen-induced itch exacerbated the clinical itch perception in these patients. A seed-based analysis revealed decreased functional connectivity from baseline resting state to the evoked-itch state between several itch-related brain regions, particularly the insular and cingulate cortices and basal ganglia, where decreased connectivity was significantly correlated with increased levels of perceived itch. In contrast, evoked itch increased connectivity between key nodes of the frontoparietal control network (superior parietal lobule and dorsolateral prefrontal cortex), where higher increase in connectivity was correlated with a lesser increase in perceived itch, suggesting that greater interaction between nodes of this executive attention network serves to limit itch sensation via enhanced top-down regulation. Overall, our results provide the first evidence of itch-dependent changes in functional connectivity across multiple brain regions

    Shell model description of normal parity bands in odd-mass heavy deformed nuclei

    Get PDF
    The low-energy spectra and B(E2) electromagnetic transition strengths of 159Eu, 159Tb and 159Dy are described using the pseudo SU(3) model. Normal parity bands are built as linear combinations of SU(3) states, which are the direct product of SU(3) proton and neutron states with pseudo spin zero (for even number of nucleons) and pseudo spin 1/2 (for odd number of nucleons). Each of the many-particle states have a well-defined particle number and total angular momentum. The Hamiltonian includes spherical Nilsson single-particle energies, the quadrupole-quadrupole and pairing interactions, as well as three rotor terms which are diagonal in the SU(3) basis. The pseudo SU(3) model is shown to be a powerful tool to describe odd-mass heavy deformed nuclei.Comment: 11 pages, 2 figures, Accepted to be published in Phys. Rev.

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Rationale and design of the Kanyini guidelines adherence with the polypill (Kanyini-GAP) study: a randomised controlled trial of a polypill-based strategy amongst Indigenous and non Indigenous people at high cardiovascular risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Kanyini Guidelines Adherence with the Polypill (Kanyini-GAP) Study aims to examine whether a polypill-based strategy (using a single capsule containing aspirin, a statin and two blood pressure-lowering agents) amongst Indigenous and non-Indigenous people at high risk of experiencing a cardiovascular event will improve adherence to guideline-indicated therapies, and lower blood pressure and cholesterol levels.</p> <p>Methods/Design</p> <p>The study is an open, randomised, controlled, multi-centre trial involving 1000 participants at high risk of cardiovascular events recruited from mainstream general practices and Aboriginal Medical Services, followed for an average of 18 months. The participants will be randomised to one of two versions of the polypill, the version chosen by the treating health professional according to clinical features of the patient, or to usual care. The primary study outcomes will be changes, from baseline measures, in serum cholesterol and systolic blood pressure and self-reported current use of aspirin, a statin and at least two blood pressure lowering agents. Secondary study outcomes include cardiovascular events, renal outcomes, self-reported barriers to indicated therapy, prescription of indicated therapy, occurrence of serious adverse events and changes in quality-of-life. The trial will be supplemented by formal economic and process evaluations.</p> <p>Discussion</p> <p>The Kanyini-GAP trial will provide new evidence as to whether or not a polypill-based strategy improves adherence to effective cardiovascular medications amongst individuals in whom these treatments are indicated.</p> <p>Trial Registration</p> <p>This trial is registered with the Australian New Zealand Clinical Trial Registry ACTRN126080005833347.</p

    Genomic analysis of diet composition finds novel loci and associations with health and lifestyle

    Get PDF
    We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10−8), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10−5) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (rg ≈ 0.15–0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|rg| ≈ 0.1–0.3) and positive genetic correlations with physical activity (rg ≈ 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (rg ≈−0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction

    Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes

    Get PDF
    Type 2 diabetes (T2D) is a very common disease in humans. Here we conduct a meta-analysis of genome-wide association studies (GWAS) with ~16 million genetic variants in 62,892 T2D cases and 596,424 controls of European ancestry. We identify 139 common and 4 rare variants associated with T2D, 42 of which (39 common and 3 rare variants) are independent of the known variants. Integration of the gene expression data from blood (n = 14,115 and 2765) with the GWAS results identifies 33 putative functional genes for T2D, 3 of which were targeted by approved drugs. A further integration of DNA methylation (n = 1980) and epigenomic annotation data highlight 3 genes (CAMK1D, TP53INP1, and ATP5G1) with plausible regulatory mechanisms, whereby a genetic variant exerts an effect on T2D through epigenetic regulation of gene expression. Our study uncovers additional loci, proposes putative genetic regulatory mechanisms for T2D, and provides evidence of purifying selection for T2D-associated variants

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group

    Comparative performances of machine learning methods for classifying Crohn Disease patients using genome-wide genotyping data

    Get PDF
    Abstract: Crohn Disease (CD) is a complex genetic disorder for which more than 140 genes have been identified using genome wide association studies (GWAS). However, the genetic architecture of the trait remains largely unknown. The recent development of machine learning (ML) approaches incited us to apply them to classify healthy and diseased people according to their genomic information. The Immunochip dataset containing 18,227 CD patients and 34,050 healthy controls enrolled and genotyped by the international Inflammatory Bowel Disease genetic consortium (IIBDGC) has been re-analyzed using a set of ML methods: penalized logistic regression (LR), gradient boosted trees (GBT) and artificial neural networks (NN). The main score used to compare the methods was the Area Under the ROC Curve (AUC) statistics. The impact of quality control (QC), imputing and coding methods on LR results showed that QC methods and imputation of missing genotypes may artificially increase the scores. At the opposite, neither the patient/control ratio nor marker preselection or coding strategies significantly affected the results. LR methods, including Lasso, Ridge and ElasticNet provided similar results with a maximum AUC of 0.80. GBT methods like XGBoost, LightGBM and CatBoost, together with dense NN with one or more hidden layers, provided similar AUC values, suggesting limited epistatic effects in the genetic architecture of the trait. ML methods detected near all the genetic variants previously identified by GWAS among the best predictors plus additional predictors with lower effects. The robustness and complementarity of the different methods are also studied. Compared to LR, non-linear models such as GBT or NN may provide robust complementary approaches to identify and classify genetic markers

    Cerebral small vessel disease genomics and its implications across the lifespan

    Get PDF
    White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.Peer reviewe
    corecore