92 research outputs found

    Ground Waves Generated by Pile Driving, and Structural Interaction

    Get PDF
    Pre-formed steel or concrete pile elements are installed by high energy impact or vibro-driver, which causes outgoing ground waves. In severe cases, adjacent buildings are at risk of damage. Assessment of risk is conventionally by reference to threshold limits of vibration. The global approach considers neither the interactive effects between ground and structure, nor frequency and duration. Here, firstly, the dynamics of a pile head impact and of the transmission of a portion of the energy into the ground were modelled by a combination of finite elements (FE), springs and dashpots. The boundary disturbances were then applied to a second model of the soil as an elastic half space. This outer model was constructed of axisymmetric finite and infinite elements for calibration against on-site measurements. The infinite elements (IE) represented a wider zone, and avoided spurious wave reflections at boundaries. Next, the verified ground disturbances adjacent to the pile were used as input to a three-dimensional FE/IE wedge-shaped model of a ‘slice’ of the axisymmetric system. Various structural forms, of steel frame structures and of brick walls, were added, giving a dynamic soil-structure analysis. Results show the responses of flexible and stiff structures to outgoing waves caused by impact pile driving and vibro-driving

    Tomographic imaging and scanning thermal microscopy: thermal impedance tomography

    Get PDF
    The application of tomographic imaging techniques developed for medical applications to the data provided by the scanning thermal microscope will give access to true three-dimensional information on the thermal properties of materials on a mm length scale. In principle, the technique involves calculating and inverting a sensitivity matrix for a uniform isotropic material, collecting ordered data at several modulation frequencies, and multiplying the inverse of the matrix with the data vector. In practice, inversion of the matrix in impractical, and a novel iterative technique is used. Examples from both simulated and real data are given

    Parallel computation of 3-D soil-structure interaction in time domain with a coupled FEM/SBFEM approach

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10915-011-9551-xThis paper introduces a parallel algorithm for the scaled boundary finite element method (SBFEM). The application code is designed to run on clusters of computers, and it enables the analysis of large-scale soil-structure-interaction problems, where an unbounded domain has to fulfill the radiation condition for wave propagation to infinity. The main focus of the paper is on the mathematical description and numerical implementation of the SBFEM. In particular, we describe in detail the algorithm to compute the acceleration unit impulse response matrices used in the SBFEM as well as the solvers for the Riccati and Lyapunov equations. Finally, two test cases validate the new code, illustrating the numerical accuracy of the results and the parallel performances. © Springer Science+Business Media, LLC 2011.Jose E. Roman and Enrique S. Quintana-Orti were partially supported by the Spanish Ministerio de Ciencia e Innovacion under grants TIN2009-07519, and TIN2008-06570-C04-01, respectively.Schauer, M.; Román Moltó, JE.; Quintana Orti, ES.; Langer, S. (2012). Parallel computation of 3-D soil-structure interaction in time domain with a coupled FEM/SBFEM approach. Journal of Scientific Computing. 52(2):446-467. doi:10.1007/s10915-011-9551-xS446467522Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK User’s Guide. Society for Industrial and Applied Mathematics, Philadelphia (1992)Antes, H., Spyrakos, C.: Soil-structure interaction. In: Beskos, D., Anagnotopoulos, S. (eds.) Computer Analysis and Design of Earthquake Resistant Structures, p. 271. Computational Mechanics Publications, Southampton (1997)Appelö, D., Colonius, T.: A high-order super-grid-scale absorbing layer and its application to linear hyperbolic systems. J. Comput. Phys. 228(11), 4200–4217 (2009)Astley, R.J.: Infinite elements for wave problems: a review of current formulations and a assessment of accuracy. Int. J. Numer. Methods Eng. 49(7), 951–976 (2000)Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.1, Argonne National Laboratory (2010)Benner, P.: Contributions to the numerical solution of algebraic Riccati equations and related eigenvalue problems. Dissertation, Fak. f. Mathematik, TU Chemnitz–Zwickau, Chemnitz, FRG (1997)Benner, P.: Numerical solution of special algebraic Riccati equations via an exact line search method. In: Proc. European Control Conf. ECC 97, Paper 786, BELWARE Information Technology, Waterloo (B) (1997)Benner, P., Quintana-Ortí, E.: Solving stable generalized Lyapunov equations with the matrix sign function. Numer. Algorithms 20(1), 75–100 (1999)Benner, P., Byers, R., Quintana-Ortí, E., Quintana-Ortí, G.: Solving algebraic Riccati equations on parallel computers using Newton’s method with exact line search. Parallel Comput. 26(10), 1345–1368 (2000)Benner, P., Quintana-Ortí, E.S., Quintana-Ortí, G.: Solving linear-quadratic optimal control problems on parallel computers. Optim. Methods Softw. 23(6), 879–909 (2008)Bettess, P.: Infinite Elements. Penshaw Press, Sunderland (1992)Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia (1997)Borsutzky, R.: Braunschweiger Schriften zur Mechanik - Seismic Risk Analysis of Buried Lifelines, vol. 63. Mechanik-Zentrum Technische Universität. Braunschweig (2008)Dongarra, J.J., Whaley, R.C.: LAPACK working note 94: A user’s guide to the BLACS v1.1. Tech. Rep. UT-CS-95-281, Department of Computer Science, University of Tennessee (1995)Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629–651 (1977)Granat, R., Kågström, B.: Algorithm 904: The SCASY library – parallel solvers for Sylvester-type matrix equations with applications in condition estimation, part II. ACM Trans. Math. Softw. 37(3), 33:1–33:4 (2010)Guerrero, D., Hernández, V., Román, J.E.: Parallel SLICOT model reduction routines: The Cholesky factor of Grammians. In: Proceedings of the 15th Triennal IFAC World Congress, Barcelona, Spain (2002)Harr, M.E.: Foundations of Theoretical Soil Mechanics. McGraw-Hill, New York (1966)Hilbert, H., Hughes, T., Taylor, R.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Eng. Struct. Dyn. 5, 283 (1977)Kleinman, D.: On an iterative technique for Riccati equation computations. IEEE Trans. Autom. Control AC-13, 114–115 (1968)Lehmann, L.: Wave Propagation in Infinite Domains. Springer, Berlin (2006)Lehmann, L., Langer, S., Clasen, D.: Scaled boundary finite element method for acoustics. J. Comput. Acoust. 14(4), 489–506 (2006)Liao, Z.P., Wong, H.L.: A transmitting boundary for the numerical simulation of elastic wave propagation. Soil Dyn. Earthq. Eng. 3(4), 174–183 (1984)Lysmer, J., Kuhlmeyer, R.L.: Finite dynamic model for infinite media. J. Eng. Mech. 95, 859–875 (1969)Meskouris, K., Hinzen, K.G., Butenweg, C., Mistler, M.: Bauwerke und Erdbeben - Grundlagen - Anwendung - Beispiele. Vieweg Teubner, Wiesbaden (2007)MPI Forum: The message passing interface (MPI) standard (1994). http://www.mcs.anl.gov/mpiNewmark, N.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85, 67 (1959)Petersen, C.: Dynamik der Baukonstruktionen. Vieweg/Sohn Verlagsgesellschaft, Braunschweig (2000)Roberts, J.: Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Int. J. Control 32, 677–687 (1980)Schauer, M., Lehmann, L.: Large scale simulation with scaled boundary finite element method. Proc. Appl. Math. Mech. 9, 103–106 (2009)Wolf, J.: The Scaled Boundary Finite Element Method. Wiley, Chichester (2003)Wolf, J., Song, C.: Finite-Element Modelling of Unbounded Media. Wiley, Chichester (1996

    Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo

    Get PDF
    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein

    Lawsonia intracellularis exploits β-catenin/Wnt and Notch signalling pathways during infection of intestinal crypt to alter cell homeostasis and promote cell proliferation

    Get PDF
    Lawsonia intracellularis is an obligate intracellular bacterial pathogen that causes proliferative enteropathy (PE) in pigs. L. intracellularis infection causes extensive intestinal crypt cell proliferation and inhibits secretory and absorptive cell differentiation. However, the affected host upstream cellular pathways leading to PE are still unknown. β-catenin/Wnt signalling is essential in maintaining intestinal stem cell (ISC) proliferation and self-renewal capacity, while Notch signalling governs differentiation of secretory and absorptive lineage specification. Therefore, in this report we used immunofluorescence (IF) and quantitative reverse transcriptase PCR (RTqPCR) to examine β-catenin/Wnt and Notch-1 signalling levels in uninfected and L. intracellularis infected pig ileums at 3, 7, 14, 21 and 28 days post challenge (dpc). We found that while the significant increase in Ki67+ nuclei in crypts at the peak of L. intracellularis infection suggested enhanced cell proliferation, the expression of c-MYC and ASCL2, promoters of cell growth and ISC proliferation respectively, was down-regulated. Peak infection also coincided with enhanced cytosolic and membrane-associated β-catenin staining and induction of AXIN2 and SOX9 transcripts, both encoding negative regulators of β-catenin/Wnt signalling and suggesting a potential alteration to β-catenin/Wnt signalling levels, with differential regulation of the expression of its target genes. We found that induction of HES1 and OLFM4 and the down-regulation of ATOH1 transcript levels was consistent with the increased Notch-1 signalling in crypts at the peak of infection. Interestingly, the significant down-regulation of ATOH1 transcript levels coincided with the depletion of MUC2 expression at 14 dpc, consistent with the role of ATOH1 in promoting goblet cell maturation. The lack of significant change to LGR5 transcript levels at the peak of infection suggested that the crypt hyperplasia was not due to the expansion of ISC population. Overall, simultaneous induction of Notch-1 signalling and the attenuation of β-catenin/Wnt pathway appear to be associated with the inhibition of goblet cell maturation and enhanced crypt cell proliferation at the peak of L. intracellularis infection. Moreover, the apparent differential regulation of apoptosis between crypt and lumen cells together with the strong induction of Notch-1 signalling and the enhanced SOX9 expression along crypts 14 dpc suggest an expansion of actively dividing transit amplifying and/or absorptive progenitor cells and provide a potential basis for understanding the development and maintenance of PE

    The concept of transport capacity in geomorphology

    Get PDF
    The notion of sediment-transport capacity has been engrained in geomorphological and related literature for over 50 years, although its earliest roots date back explicitly to Gilbert in fluvial geomorphology in the 1870s and implicitly to eighteenth to nineteenth century developments in engineering. Despite cross fertilization between different process domains, there seem to have been independent inventions of the idea in aeolian geomorphology by Bagnold in the 1930s and in hillslope studies by Ellison in the 1940s. Here we review the invention and development of the idea of transport capacity in the fluvial, aeolian, coastal, hillslope, débris flow, and glacial process domains. As these various developments have occurred, different definitions have been used, which makes it both a difficult concept to test, and one that may lead to poor communications between those working in different domains of geomorphology. We argue that the original relation between the power of a flow and its ability to transport sediment can be challenged for three reasons. First, as sediment becomes entrained in a flow, the nature of the flow changes and so it is unreasonable to link the capacity of the water or wind only to the ability of the fluid to move sediment. Secondly, environmental sediment transport is complicated, and the range of processes involved in most movements means that simple relationships are unlikely to hold, not least because the movement of sediment often changes the substrate, which in turn affects the flow conditions. Thirdly, the inherently stochastic nature of sediment transport means that any capacity relationships do not scale either in time or in space. Consequently, new theories of sediment transport are needed to improve understanding and prediction and to guide measurement and management of all geomorphic systems

    Flooding in Boscastle and North Cornwall, August 2004

    Get PDF
    On 16 August 2004 an extreme rainfall event took place near the north Cornwall coast when up to 200 mm of rain fell in a period of approximately 5 hours.. This rainfall led to severe flooding in the Valency and Crackington Stream catchments and serious flooding on the Rivers Ottery and Neet. This report describes the rainfall, and the flooding caused by the event. It was produced for the Environment Agency by HR Wallingford Ltd (HRW) with analyses of the meteorological, hydrological and hydraulic aspects of the event being undertaken by the UK Met Office (UKMO), the Centre for Ecology and Hydrology, Wallingford (CEH) and HR Wallingford, respectively. Field work and data collection for the Valency and Crackington Stream catchments were carried out by Halcrow and Royal Haskoning, respectively
    • …
    corecore