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Abstract The notion of sediment-transport capacity has been engrained in geomorphological and related
literature for over 50 years, although its earliest roots date back explicitly to Gilbert in fluvial geomorphology
in the 1870s and implicitly to eighteenth to nineteenth century developments in engineering. Despite cross
fertilization between different process domains, there seem to have been independent inventions of the
idea in aeolian geomorphology by Bagnold in the 1930s and in hillslope studies by Ellison in the 1940s. Here
we review the invention and development of the idea of transport capacity in the fluvial, aeolian, coastal,
hillslope, débris flow, and glacial process domains. As these various developments have occurred, different
definitions have been used, which makes it both a difficult concept to test, and one that may lead to poor
communications between those working in different domains of geomorphology. We argue that the original
relation between the power of a flow and its ability to transport sediment can be challenged for three
reasons. First, as sediment becomes entrained in a flow, the nature of the flow changes and so it is unreasonable
to link the capacity of the water or wind only to the ability of the fluid tomove sediment. Secondly, environmental
sediment transport is complicated, and the range of processes involved in most movements means that simple
relationships are unlikely to hold, not least because the movement of sediment often changes the substrate,
which in turn affects the flow conditions. Thirdly, the inherently stochastic nature of sediment transport means
that any capacity relationships do not scale either in time or in space. Consequently, new theories of sediment
transport are needed to improve understanding and prediction and to guide measurement and management
of all geomorphic systems.

1. Introduction

The notion of sediment-transport capacity has been engrained in geomorphological and related geophy-
sical literature for over 50 years. However, the definition has not always been consistent across the
discipline. One reason for this inconsistency has been the tendency in recent decades for increasing
specialization in studies relating to particular process domains. Together with the proliferation of literature,
specialization means that only rarely are evaluations made of linkages between concepts in different
process domains. This trend toward increasingly focussed specialization, however, contrasts with develop-
ments in complexity theory, Earth Systems Science, and integrated management of the environment that
all emphasize the benefits of holistic approaches. In this review, we will first examine how the notion of
transport capacity has been developed and applied in the various branches of geomorphology in order
to evaluate commonalities and divergences in approach, in relation to conceptual developments and
empirical support. In doing so, we assess the effectiveness of the concept by using advances across the
different process domains to inform and interpret each other and thereby provide an overall critique of
the concept. We take a critical realist approach [Richards, 1990; Sayer, 2000] to assess whether the use
of the concept, both within a single process domain and between different process domains, enables
the explanation of observations both in the field and laboratory. In other words, if the definitions of trans-
port capacity that have been developed are real—mechanistic—characterizations of how sediment is
transported in geomorphic systems, they should be able to explain observed phenomena. If not, there
needs to be a reevaluation of whether it is the concept (or concepts) that are problematic or the experimental
approaches and data that are flawed.
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GK Gilbert was central to the development of the concept of transport capacity in geomorphology. In his
Report on the Geology of the Henry Mountains [Gilbert, 1877] he noted “Transportation is favored by increasing
water supply as greatly as by increasing declivity. When the volume of a storm increases, it becomes at the
same time more rapid, and its transporting capacity gains by the increment to velocity as by the increment
to volume. Hence the increase in power of transportation is more than proportional to the increase in
volume” [Gilbert, 1877, p. 98].

Based on a steady state conceptualization of river form, and an early formulation of a concept of stream
power, he goes on to suggest: “Let us suppose that a stream endowed with a constant volume of water, is
at some point continuously supplied with as great a load as it is capable of carrying. For so great a distance
as its velocity remains the same, it will neither corrade (downward) nor deposit, but will leave the grade of its
bed unchanged. But if in its progress it reaches a place where a less declivity of bed gives a diminished
velocity, its capacity for transportation will become less than the load and part of the load will be deposited.
Or if in its progress it reaches a place where a greater declivity of bed gives an increased velocity, the capacity
for transportation will become greater than the load and there will be corrasion of the bed. In this way a
stream which has a supply of débris equal to its capacity, tends to build up the gentler slopes of its bed
and cut away the steeper. It tends to establish a single, uniform grade” [Gilbert, 1877, p. 106].

Implicit in this definition is the idea of supply limitation that a channel will convey as much sediment as its
capacity allows, unless there is insufficient material to be transported. More widely influential was Gilbert’s
seminal U.S. Geological Survey Professional Paper The Transportation of Débris by Running Water, published
in 1914. It is this work that seems to provide the first formal definition of transport capacity in the English lit-
erature: “The maximum load a stream can carry is its capacity.… Capacity is a function of various conditions,
such as slope and discharge,…. When a fully loaded stream undergoes some change of condition affecting
its capacity, it becomes thereby overloaded or underloaded. If overloaded, it drops part of its load, making a
deposit. If underloaded, it takes on more load, thereby eroding its bed” [Gilbert, 1914, p. 35].

He goes on to say that capacity is a function of discharge, slope, débris size, and channel form (channel
depth/width) ratio. While the concept of transport capacity is asserted without support from further refer-
ence in the 1877 report, his statement that “the maximum particles which streams are able to move are pro-
portioned to the sixth powers of their velocities” [Gilbert, 1877, p. 104] shows that he was at least aware of the
work of Leslie [1823] or more likely Hopkins [1844] on entrainment by this time. In 1914, however, Gilbert sug-
gests that the idea can be traced at least as far back as 1786 in the work of Dubuat, who demonstrated experi-
mentally that the sediment discharge in a water flow was proportional to a square of excess velocity (flow
velocity minus the flow velocity required for entrainment). These results were certainly still in use almost a
century later, for example, in the study of Lechalas [1871]. Both of these authors were working in a tradition
of applied hydraulics, interested in the navigation of rivers and the building of canals.

Although Gilbert [1877, 1914] provides the first uses of the term in the geomorphological/geophysical litera-
ture, it was largely ignored or misunderstood by this community until championed by Strahler’s advocacy of a
process-based geomorphology in his papers of the early 1950s [Strahler, 1950, 1952]. (See, for example,
Holmes’ review of 1915 in which he suggests that the wide variability in observed rates means that these
sorts of observation are unlikely to be useful in dating geological deposits and thus unlikely to be of broader
use. But, by contrast that “experiments of these kinds, while of considerable theoretical interest, serve only as
a check to undue speculation” [Holmes, 1915, p. 134] and what is needed is more field study.) However, the
engineering aspects of his work meant that Gilbert influenced the hydraulic engineering literature more
directly, for example, being cited in the work of Hans Einstein [Einstein, 1942, p. 567], originally working in
the Zürich school but then later for the U.S. Department of Agriculture [e.g., Meyer-Peter et al., 1934;
Einstein, 1941, 1942, 1950]—but it is interesting that the first two of these papers do not mention the term
capacity; it is only once that Einstein was more fully embedded in the U.S. system that he started using the
term in print. From the 1950s, the term transport capacity is firmly established in fluvial geomorphology.

Apparently separately, in the aeolian literature Bagnold started to develop a concept of “sand-saturated
wind” [Bagnold, 1936]. This concept arose from his experimental work to determine how much sand a given
wind (shear) velocity could entrain. From this point on, the concept of capacity was established in the aeolian
literature. Furthermore, because of Bagnold’s wider interests in both coastal geomorphology [Bagnold, 1946]
and what he considered his “hobby” [Bagnold, 1990, p. 161]—fluvial geomorphology [Bagnold, 1966, 1973]—
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as well as granular flows [Bagnold, 1956], the terminology gained wider purchase. Bagnold’s work seems to
be an example of an independent, parallel development of a concept, in that he did not seem to be fully
aware of Gilbert’s legacy until his own direct forays into hydraulic engineering in the 1950s (despite an earlier,
practical start in this area [Bagnold, 1990, p. 9]).

In the hillslope domain, a further apparently independent concept of transport capacity is introduced by
Ellison [1947] in his work on soil erosion by water, although it was not taken further until the highly influential
paper of Meyer and Wischmeier [1969]. The latter clearly uses concepts from the fluvial literature but cites
neither Gilbert nor Einstein nor Bagnold as a basis for a broader concept of transport capacity in soil-erosion
studies. The first explicit discussion of a transport capacity in relation to débris flows does not come until the
1990s but also seems influenced by the fluvial literature. However, an example where the concept has been
used much less is in glacial geomorphology. In the rare case where it has been used, there seems to be an
influence from the fluvial domain [Alley et al., 1997], and there needs to be an evaluation of the extent to
which the concept is applicable to the complex glacial system.

Today, the concept of transport capacity influences most branches of geomorphology. It is widely presented
in introductory texts, both in general terms: “the rate of transport is limited by the transport capacity of the
process, which is defined at the maximum amount of material the process can carry” [Holden, 2008, p. 302]
and in relation to specific processes, for example, in the fluvial literature “the transport capacity of the
stream…can be viewed as being directly a function of flow discharge and slope” [Robert, 2003, p. 11],
“[t]he rate of bedload transport is almost entirely a function of the transporting capacity of the flow”
[Robert, 2003, p. 81], “capacity refers to the volume of material that can be removed for any given flow condition”
[Robert, 2003, p. 146], “most bedload formulae aim to determine the rate of bedload transport as a function of
the transport capacity of the flow. This is done by calculating the excess flow capacity above a critical thresh-
old, at which transport is initiated” [Charlton, 2008, p. 110], “stream power determines the capacity of a given
flow to transport sediment. This is the maximum volume of sediment that can be transported past a given
point per unit time” [Charlton, 2008, p. 93], “sediment transport rate (capacity)… The sediment transport rate
is the amount (weight, mass, or volume) of sediment that can be moved past a given width of flow in a given
time” [Bridge, 2002, p. 60] and in relation to the hillslope domain “because soil creep moves the regolith
material…transport is always at the transporting capacity” [Holden, 2008, p. 309].

However, even within these examples, it is clear that there are differences in the terminology used.
Furthermore, the application of the term in the research literature does not seem to be consistent within
or among different process domains. For example, some authors use it to denote the maximum possible rate
of sediment transport by a particular flow [e.g., Abrahams et al. 2001; Abrahams and Gao, 2006; Foster and
Meyer, 1972], while others use it to denote the potential for transport once grain resistance has been over-
come [e.g., Davies, 1988a; Eaton et al., 2006; Ferguson, 2003] and yet others as the transport rate under an
equilibrium condition [e.g., Bagnold, 1936; Celik and Rodi, 1991; Gilbert, 1877; Gomez and Church, 1989;
Zhang et al., 2009]. This flexibility in terminology is problematic. Not only does it make communication diffi-
cult both within the discipline and also especially in interdisciplinary studies [Bracken and Oughton, 2006].
Furthermore, from an epistemic perspective, if transport capacity can refer to multiple real-world processes,
then it becomes all but impossible to test the idea, and it appears that only ancillary hypotheses are being
evaluated rather than the core concept itself.

Wainwright et al. [2008] also criticized the use of the term in hillslope studies from both theoretical and prac-
tical considerations and in particular the difficulties it poses when moving from one process domain to
another. In the context of this review, they specifically note that erosion that shows a transition from concen-
trated overland flow erosion and débris flow erosion (as observed, for example, by Oostwoud Wijdenes and
Ergenzinger [1998]) could never be predicted by a transport capacity-based model, as it would not allow
sediment fluxes to become high enough to allow the transition to occur. They also demonstrated that both
theoretical developments and the limited testing that had been carried out were limited to steady state
conditions and were therefore unlikely to be representative of dynamic conditions.

In the following sections we provide an overview of how the concept has developed and been defined in the
different process domains of fluvial, aeolian, coastal, hillslope, débris flow, and glacial geomorphology areas
of the discipline of geomorphology. We evaluate the conceptual development especially in terms of an
undercurrent of changes in approach to measurement and monitoring: not least the shift from deterministic
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to stochastic underpinnings of process understanding; the dynamics in space and time and thus the move
away from simple, steady state assumptions [Wainwright et al., 2008]; and the need to look at fluid-sediment
systems in an integrated way in line with broader developments in complexity theory. By adopting a realist
perspective, we argue that advances in all of these areas suggest that existing approaches are limited both
conceptually and practically. We conclude by suggesting how the discipline might move forward for
providing unified concepts of sediment-transport modeling.

2. Sediment-Transport Capacity in Fluvial Sediment Transport

Gilbert’s concept of transport capacity in rivers was defined based on the assumption that sediment-laden flow
is in equilibrium, so that the amount of sediment carried into a stream cross section or reach is equivalent to
that transported out of it. Consequently, neither deposition nor erosion occurs in this cross section or reach,
and hence, the associated channel morphology remains stable [Gilbert, 1877, 1914]. The linking of the ideas
of capacity and equilibrium has been used to interpret the shapes of stream profiles [e.g., Mackin, 1948] (but
see discussions by Leopold [1980] and Bracken and Wainwright [2006]) and implied in regime theory, which is
the concept that river channels adjust toward a dynamic equilibrium when it is just able to convey the water
and sediment supplied from upstream [e.g., Lacey, 1930; Knighton, 1998; Ferguson, 2008]. The original idea of
transport capacity was further developed by Einstein [1950] who considered that capacity occurred when the
rate of sediment supply was equal to the transport rate and thus when the channel profile was in equilibrium.
Most subsequent uses in the fluvial literature are based on one or both of Gilbert or Einstein.

However, the prevalent usage of sediment-transport capacity has been complicated for twomain reasons. First,
sediment in a river has been considered to be transported in different modes. Coarse particles travel through
intermittent contact with the bed [Graf, 1971]. Thus, their movement is supported by the bed, and the asso-
ciated load is called bedload. Finer particles oftenmove in suspension because their settling velocities aremore
easily balanced by turbulence. The associated load is referred to as suspended load [Vanoni, 1975]. Secondly,
sediment transported in natural rivers is heterogeneous in size. Thus, both modes of transport can occur for
a single flow condition. A further consequence of mixed grain sizes is that sediment-transport rates are
controlled not only by river hydraulics but also by the interaction between different sized particles within
transported sediment and bed materials [Wilcock, 1998, as already recognized in Gilbert, 1877], and the rate
of upstream sediment supply. Sediment-transport capacity has thus been evaluated to date in terms of sedi-
ment—either homogeneous or heterogeneous—transported by bedload and in suspension.

2.1. Transport Capacity for Bedload

Gilbert explicitly indicated in his definition of transport capacity that his flume experiments were related to
bedload transport only [Gilbert, 1914, p. 35]. The concept of bedload-transport capacity has been used as
a benchmark against which the ability of a stream to transport sediment can be measured and compared.
Furthermore, it has been widely used to determine degradation and aggradation rates on river channel beds
and to understand if bedload transport is primarily constrained by sediment supply (i.e., supply-limited rivers)
or river flow hydraulics (i.e., transport-limited rivers) [Gilbert, 1877; Andrew, 1979; Hicks and Gomez, 2003;
Jackson and Beschta, 1982; Leopold et al., 1964; Lisle, 2008; Mackin, 1948; Reid and Dunne, 1996; Sear, 1996].
Quantitatively, the bedload-transport capacity has been regarded as the bedload-transport rate directly
obtained from the flow in equilibrium, regardless of whether the flow is supply or transport limited
[Ferguson et al., 1989; Gomez and Church, 1989;Wilcock et al., 2001] or more commonly inferred by comparing
the measured transport rates with those predicted by bedload-transport equations [Lisle and Church, 2002;
Marti and Bezzola, 2006; Mueller and Pitlick, 2005; Reid et al., 1996; Warburton and Davies, 1998]. Determination
of the bedload-transport capacity in these applications is fundamentally supported by the common assump-
tion that bedload-transport capacity is the transport rate of a stream in equilibrium [Gomez and Church, 1989]
that can be predicted by one of the established bedload-transport equations [Graf, 1971; Hicks and Gomez,
2003;Mueller et al., 2005]. However, numerous studies have shown that no single bedload-transport equation
is applicable to all natural gravel bed rivers [Almedeij and Diplas, 2003; Barry et al., 2004; Bathurst et al., 1987;
Einstein, 1941, 1942; Gomez and Church, 1989; Martin, 2003; Reid et al., 1996] (Figure 1). This observation sug-
gests that for given hydraulic and channel conditions, different equations may give rise to different bedload-
transport rates, which is logically confusing as the “maximum load” specified in the concept of transport
capacity should be a unique value. However, even in Gilbert’s first statement on the concept, he suggested
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Figure 1. Comparisons between observed and calculated bedload transport in Elbow River, Alberta, Canada, data for
different bedload formulae, illustrating that each formula produces contrasting estimates. (HRS: a group of formulae
developed by researchers associated with the United Kingdom Hydraulics Research) [from Gomez and Church, 1989].
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that “the capacity of a stream for transportation is greater for fine débris than for coarse” [Gilbert, 1877, p. 104],
implying that the capacity is a function of particle size. Therefore, the concept of bedload-transport capacity
needs to be revisited. Inasmuch as the behavior of bedload transport is ostensibly different between beds
with homogeneous and mixed sizes, the concept will be reexamined and requantified for the two types of
grain size distribution, respectively.

2.2. Bedload-Transport Capacity for Grains With Homogeneous Sizes

Bedload with homogeneous grains mainly occurs in flume experiments. In a flow under the equilibrium condi-
tion and over a movable bed consisting of grains of identical size, bedload-transport capacity has been consid-
ered equal to the bedload-transport rate of the flow, because it has been assumed that in such flows only
one transport rate is available for a given bed shear stress and grain size. Consequently, this transport rate is
the “maximum” rate that a given flow and sediment caliber can attain. This concept of transport capacity is con-
sistent with Church’s theoretical maximum transport rate that occurs over an unstructured bed composed of
the same material [Church, 2006, p. 336]. However, the hydraulics of these flows is often complicated by the
emergence of bed forms such as ripples, dunes, and pebble clusters wherein the shear stress responsible
for the transport of bedload should be partitioned from the total shear stress [Engelund and Hansen, 1967;
Fredsoe, 1993; Gao, 2012]. Although various correction methods for bed morphology have been developed
[Baldwin et al., 2002; Engelund and Hansen, 1967; Stone and Murdoch, 1989], selection of an appropriate method
is not obvious in practice. To avoid such uncertainty, many experiments have been performed in flumes with
flat, fixed beds [Abbott and Francis, 1977; Francis, 1973; Hu and Hui, 1996; Niño and Garcia, 1998; Sekine and
Kikkawa, 1992]. However, by doing so, either these experiments do not test the underlying concept of capacity
or they can only ever represent the behavior of sediment transport in very restricted conditions that seldom if
ever occur in rivers. In the experiments of Niño and Garcia [1998], the saltation trajectories of individual bedload
grains were measured using a high-speed video system, such that many dynamic properties of saltating grains
(e.g., the saltation height, length, and mean grain velocity) could be measured. These measured variables,
together with measured flow hydraulics and sediment sizes, have been subsequently used to solve governing
equations established in terms of mass and momentum balance for individual bedload grains. This approach
has led to various relationships between controlling variables such as shear stress and grain size (although
issues relating to the interdependence of each of these variables are discussed below) and three dependent
variables: δb the thickness of the bedload layer (m), Cb the mean volumetric concentration of bedload in this
layer (kg kg�1), and Ub the mean grain velocity (ms�1) [Hu and Hui, 1996; Krecic and Hanes, 1996; Lee et al.,
2000; Lee and Hsu, 1994; Sekine and Kikkawa, 1992; van Rijn, 1984a; Wiberg and Smith, 1985]. By definition,
the unit volumetric bedload-transport rate, qb (m

3m�1 s�1), is then given by

qb ¼ δbCbUb (1)

Combining the relationships describing the controls on δb, Cb, and Ub in terms of equation (1) leads to various
equations for bedload-transport rates.

However, many of the cited experiments that purport to determine transport capacity were performed by
changing the sediment supply rate while keeping the flow rate unchanged, implying that a given bed shear
stress and grain size may be related to several different bedload-transport rates. Therefore, bedload equa-
tions developed in this way are not capable of estimating a unique transport rate for homogeneous grains
and are thus incompatible with the idea of a unique transport rate representing a capacity as suggested
by this experimental approach. Again, either the underlying concept of transport capacity or the experiments
used to try to demonstrate it have been found lacking.

The plane bed condition can also be achieved in flows over mobile beds [Fernandez Luque and van Beek,
1976; Graf and Suszka, 1987; Niño et al., 1994; Rickenmann, 1991]. Bedload-transport rates measured in these
flows have again been assumed to be at capacity. In these flows, bedload may be transported in either the
saltation or the sheetflow regime [Gao, 2008]. The former involves flows with low and medium shear stress
in which bedload moves by sliding, rolling, and saltating along the bed, while the latter contains flows with
high shear stress where bedload is a loosely defined moving granular layer. In each regime, many bedload
equations have been developed to predict bedload-transport capacities. For example, Fernandez Luque
and van Beek’s [1976] and Smart’s [1983] equations are for capacities in the saltation regime, whereas
Wilson’s [1966] and Engelund’s [1981] equations are for capacities in the sheetflow regime. However,
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none of these can predict bedload in
both regimes [Wilson, 1989]. Thus, if
the transport rates predicted by these
equations do conform to transport
capacity, they do so only over the nar-
row range of hydraulic and sediment
conditions under which they were
developed and extreme caution should
be employed when applying them
more generally.

In an attempt to overcome this limita-
tion, Abrahams and Gao [2006] com-
piled a large amount of bedload data
with homogeneous grains that span a
wide range of hydraulic and sediment
conditions with mobile, flat beds.
Using these data, they developed a
general bedload equation aimed to pre-
dict bed load transport capacities in
steady, uniform, and turbulent flows
transporting bedload of homogeneous
grains over flat, mobile beds, which is
hereafter termed the ideal condition:

φb ¼ θ1:5G3:4 u
u�

(2)

where φb ¼ qbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρs=ρ�1ð ÞgD3

p is the dimensionless bedload-transport rate [Einstein, 1950]

u is the mean flow velocity (m s�1);
u* = (g h S)0.5 is the shear velocity (m s�1);
g is the acceleration due to gravity (m s�2);
G= 1� θc/θ;
θ = ρhS/(ρs� ρ)D is the dimensionless bed shear stress (also known as the Shields parameter);
ρs andρ are the density (kgm�3) of bedload grains and water, respectively;
D is the median size (m) of bedload grains;
h is the mean flow depth (m);
S is the energy slope (mm�1);
θc is the critical value of θ for the initial movement of sediment.

The value of θc for each data set was estimated by plotting the volumetric bedload-transport rate qb against θ,
fitting a trend line to these data and extending it to the θ axis where qb=0 [Abrahams and Gao, 2006].

Gao [2012] introduced a new dimensionless bedload-transport rate B= ib/ω, where ib= qb g (ρs� ρ) is the sub-
merged bedload-transport rate (J s�1m�2), ω= τ u is the stream power per unit area (or unit stream power)
(Wm�2), andτ = ρghS is mean bed shear stress. He further demonstrated that equation (2) may be trans-
formed into a much simpler form in terms of B:

B ¼ G3:4 (3)

The predictive ability of equation (3) was evaluated using a set of bedload data not only independent of that
used in Abrahams and Gao [2006] but also covering a wide range of hydraulic and sediment conditions.
Combination of these two groups leads to an unusual new group of bedload data that represent almost
the entire spectrum of the saltation and sheetflow regimes under the ideal condition. The good fit of
equation (3) to these data (Figure 2) suggests that under the ideal condition only, bedload-transport capacity
can be generally determined by a single equation. Inasmuch as G is quantitatively equivalent to (Pg)

0.5, where
Pg is the relative frequency of grain-to-grain collisions during bedload transport at a given flow intensity [Gao,
2012], the general good performance of equation (3) may be attributed to the perspective of treating bed

Figure 2. Measured submerged bedload-transport rate, ib, versus
predicted values using equation (3). The data were compiled from Johnson
[1943], Smart and Jäggi [1983], Gomez and Church [1988], and Recking [2006]
and those compiled by Gao [2003]. These data include all of the available
experiments to date that transport bedload of homogeneous grains under
the ideal condition and cover the full range of both the saltation and
sheetflow regimes.
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load transport as a granular flow phe-
nomenon [Frey and Church, 2011].
Although equation (3) only applies to
flows under the ideal condition, it
demonstrates the ability of G to charac-
terize some aspects of the dynamics of
bedload transport [Gao, 2012]. However,
because the ideal condition rarely exists
in natural rivers, it is of limited direct, pre-
dictive value. Furthermore, it could only
ever be an incomplete component of a
definition of capacity in more dynamic
and variable settings.

2.3. Bedload-Transport Capacity for
Grains With Heterogeneous Sizes

Bedload of heterogeneous grains is typi-
cally transported in gravel-bed rivers. A
well-known phenomenon in gravel-bed
rivers is bed armoring, in which the bed
coarsens due to the preferential trans-
port of fine bed material. This coarsening
causes a reduction in transport rate and
for fines to become less exposed to the
flow (the hiding effect) [Andrews and
Parker, 1987; Egiazaroff, 1965; Einstein
and Chien, 1953; Gomez, 1983; Lisle and
Madej, 1992; Montgomery et al., 2000;
Sutherland, 1987]. Therefore, for most of
the time, only a fraction of grain sizes
present on the bed of rivers is in motion
[Gomez, 1995; Lisle, 1995], and so trans-
port rates decrease compared to the
values that have been assumed to
represent theoretical capacity values as
discussed above (Figure 3). During flood-
ing, the armor layer may be broken

[Ashworth and Ferguson, 1989; Clayton and Pitlick, 2008; Lisle and Smith, 2003; Parker and Klingeman, 1982;
Wilcock and DeTemple, 2005;Wilcock and Southard, 1989] and hence surface grains of all sizes are able to move
as bedload at similar levels of bed shear stress, the condition similar to the strong form of equal mobility [Parker
and Toro-Escobar, 2002]. Bedload transported under this condition is generally believed to be at capacity
[Gomez, 2006; Laronne et al., 1994; Parker, 2006; Powell et al., 1999, 2001; Wilcock and Crowe, 2003], which has
been taken to imply that bedload-transport capacity in gravel-bed rivers occurs only when the armor layer is
broken and the transport rate is high, such as in peak flows during floods [Lisle and Church, 2002; Wilcock
and McArdell, 1993].

However, as stated above, bedload-transport capacity has also been regarded as the transport rate under the
equilibrium condition, which may also happen during relatively low flow with an armor layer. These two
concepts of bedload-transport capacity in gravel-bed rivers are inconsistent with each other if it is assumed
that the flow alone controls the theoretical transport capacity. Furthermore, using the bedload data that were
collected from a natural gravel-bed river [Reid et al., 1995]—which have been widely accepted to represent
transport-capacity flow [Laronne et al., 1994; Powell et al., 2001]—Gao [2011] demonstrated by comparing
the measured bedload-transport rates with those predicted using equation (2) that the former is significantly
lower than the latter, suggesting that even the relatively high transport rates in flows without the armor layer
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Figure 3. Schematic illustration of grain size changes in the bed surface
(Ds50) and transported (D50) sediment. (a) A feed flume, only the bed
surface changes. (b) A recirculating flume, the change is primarily in the
transported sediment. (c) In both cases, transport coarsens relative to
the bed surface. Thus, the same ratio of D50/Ds50 may be caused by
(1) a low transport rate with small D50 or (2) a high transport rate with big
D50 [after Wilcock and DeTemple, 2005].
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are lower than the theoretical transport
capacities of bedload with the equiva-
lent homogeneous grains. Thus, the
concept of bedload-transport capacity
in gravel bed rivers (i.e., for heteroge-
neous grains) appears to have been
applied differently from that for flows
transporting bed load of grains with
homogeneous sizes. Such an inconsis-
tency reflects the problems with inter-
pretation of the concept using a critical
realist perspective.

In an attempt to avoid the inconsistency,
bedload-transport capacity for heteroge-
neous grains was defined by Gao [2011]
as the maximum possible transport rate
a gravel-bed river can have for a given
value of θ calculated using the median
size of bedload grains D50 (m), although
this approach may confuse issues further
by providing yet another definition of
what capacity might be. During high
flows when the armor layer is broken,
average grain-size distributions in bed-
load and the bed substrate are similar
[Andrews and Parker, 1987; Parker, 2006;
Parker et al., 1982; Parker and Toro-
Escobar, 2002]. When the channel bed is
covered by an armor layer, bedload-
transport rate has been related to the
ratio of the median size of bedload
grains (D50) to the median bed-surface
grain size (Ds50 (m)) [Parker, 2006, p.
187, equations (3)–(48)]. Unfortunately,
the relationship is uncertain due to vari-
able sediment-supply rates, which adjust

both D50 and Ds50 [Buffington and Montgomery, 1999a, 1999b; Dietrich et al., 1989; Gomez et al., 2001; Lisle and
Madej, 1992;Whiting and King, 2003]. For example, the same ratio of D50/Ds50 may be caused by a low transport
rate with smallD50 or a high transport ratewith a largeD50 [Wilcock and DeTemple, 2005, Figure 3]. By examining
a considerable body of bedload data obtained from natural gravel-bed rivers, Gao [2011] suggested that flows
transporting bedload of heterogeneous grains at capacity should satisfy the following criterion:

D50 ≥ Dsub50 (4)

where Dsub50 is the median size of grains in the bed substrate (m). This criterion is compatible with the
criterion above that the average grain-size distributions in bedload and the bed substrate are similar and is
valid for flows both with and without the armor layer in gravel-bed rivers. Using bedload-transport data from
flows of various hydraulic and sediment conditions, Gao [2011] then suggested that bedload-transport
capacity for heterogeneous grains may be generally determined using

B ¼ 0:9G6 (5)

Equation (5) was further tested by showing its superior performance to the two well-known bedload-transport
equations of Meyer-Peter and Müller [1948] and of Bagnold [1966] and its ability to identify correctly flows that
had been assumed to be at capacity in six gravel-bed rivers with armor layers in Idaho [Gao, 2011]. In practice,

Figure 4. The modified two-phase model. The two solid curves represent
equation (5) with θc = 0.03 and 0.06, respectively. The two dashed lines
denote the boundary between the two regimes for the same two θc values.
The areas between these curves and lines reflect the influence of the
uncertainties in the determination of θc values. The dots are the bedload
data reported in Hayes [1999] from a gravel-bed river significantly affected
by a recent volcanic eruption (the data that have values of B greater than 1
are not included). Regime I is the area below the horizontal zone that
includes two parts, the narrow area bounded by the two solid curves and
the one on the right representing bed load transported at and below
capacities, respectively. In the below-capacity area, bed load transport
rate is relatively low for a given flow meaning the transport efficiency is
relatively low and the median size of bed load D50 is small comparing to
that of the bed surface, Ds50 and substrate, Dsub50. In the at-capacity area,
the transport rate is relatively high for the same flow suggesting that the
relatively high transport efficiency and D50 is between Ds50 and Dsub50.
Regime II is the area above the dashed horizontal zone. It also has below-
capacity and at-capacity areas. Flows in the former have a bed with an
armor layer while in the latter do not. D50 in the former is relatively small
while in the latter is equivalent to both Ds50 and Dsub50.
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θc may be either derived from transport
measurements [Church and Hassan,
2002;Mao et al., 2008] or estimated using
a variety of statistical-, hydraulic-, or
lichenometric-based approaches [Gob
et al., 2010; Recking, 2009; Thompson
and Croke, 2008]. With a known value of
θc, equation (5) represents a single curve
in the plot of B against θ (the solid curve
in Figure 4), which Gao [2011] suggests
may be used to determine whether a
given flow is transporting bedload at
capacity (i.e., whether the flow is trans-
porting bedload at a maximum rate).
Comparing data representing four differ-
ent flows measured in Simon River near
Shoup, Idaho [Boise Adjudication Team,
2014], against the estimated maximum
rate suggested that two achieved this
rate and two did not (Figure 4). Further
examining the ratio of the fractional

transport rate qbi to the surface grain size fraction, fi, with respect to the associatedmedian sizes of surface grains
Di showed (Figure 5) that flows with higher θ values tend to have higher fractional transport rates for coarser
grains (Di> 10mm in Figure 5) and that the distributions of the ratios for “capacity” flows have similar patterns
to those for “below-capacity” flows. Thus, flows that are considered at capacity may have similar bed-surface con-
ditions to below-capacity flows. For the concept of transport capacity to hold one would expect the bed surface
in a capacity flow to be finer in order to transport bedload at a higher rate. Therefore, the evidence suggests that
the concept does not hold.

2.4. Significance of Bedload-Transport Capacities for Homogeneous and Mixed Grains

Gao [2011] suggests that bedload-transport capacities defined by equations (2) and (5) quantify the maxi-
mum loads a flow can transport for a given group of homogeneous and heterogeneous sediments. The defi-
nition is consistent with Gilbert’s but more restrictive: “bed-load transport capacity for heterogeneous grains is
herein defined as the maximum possible transport rate a gravel-bed river can have for a given value of θ calcu-
lated using the median size of bed-load grains D50. According to this definition, though a gravel-bed river with
an armor layer may have several different available transport rates for a given θ value, it only has one max-
imum possible transport rate (i.e., the transport capacity)” [Gao, 2011, p. 298] (emphasis original).

Since bedload in natural rivers is often transported at lower rates than these assumed capacity rates, as
discussed in the previous section, these two equations (2) and (5) cannot be used directly for predicting bed-
load-transport rates. However, Gao [2011] suggested that they may serve as envelopes for all possible bed-
load-transport rates occurring in natural rivers and thus potentially have both theoretical and practical
significance. In theoretical applications, by using the median grain size of the bed substrate (Dsub50), the
dominant discharge, the representative channel slope, and the representative value of θc, the putative trans-
port capacity calculated from equation (5) seeks to predict the average bedload-transport rate of a river in
equilibrium. Therefore, Gao [2011] suggests that equation (5) can act as a simple extreme hypothesis
[Eaton et al., 2004; Knighton, 1998] to close the rational regime (i.e., which required to prevent erosion of
the bed for design flow conditions) [see Lacey, 1930], albeit in very restricted conditions. In unsteady, nonuni-
form flow, equation (5) has been treated as a conceptual framework in comparison with the standard
approach of Schumm to help interpret channel response to changing flow regimes qualitatively [Phillips,
2013], although no testing of the framework was carried out.

In practical applications, it has been suggested that equation (5) provides a quantitative benchmark for iden-
tifying the hydraulic conditions under which an armor layer begins to break [Gao, 2011]. It has long been
observed that bedload-transport rate increases abruptly at certain values of water discharge (Q (m3 s-1)) in

Figure 5. Plot of surface-based fractional transport rates (qbi/fi) against
grain size fractions, D. Each curve represents a flow transporting bedload
at capacity in one of the four gravel bed rivers in Idaho, USA.
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the plot of sediment-transport rate againstQ. This increase has been attributed to additional sediment supply
from the bed due to the breakup of the armor surface [Emmett, 1976; Emmett and Wolman, 2001] or the tran-
sition from selective transport (phase I) to equal-mobility transport (phase II) [Jackson and Beschta, 1982; Lisle
and Smith, 2003]. However, the existing methods have generally focussed on determining the threshold
values of Q, which are site specific [Bathurst, 2005; Ryan et al., 2002; Stoica and Sandgren, 2006]. Equation
(5) provides a general tool for identifying such hydraulic conditions. Gao [2011] argued that it can be
assumed that bedload in flows without an armor layer is transported at capacity (a point to which we will
return in section 8), so that the hydraulic condition under which the armor layer breaks θc must be a point
on the curve in the plot of B against θ for a known value of θc. Furthermore, the breakup of an armor layer
must result in accelerated increase of bedload-transport rates, which should be consistent with the inflection
point along the curve representing equation (5). Mathematically, determination of the inflection point leads
to [Gao, 2011]:

θ ¼ 3:5θc: (6)

When θ < 3.5θc, bedload-transport capacities occur with an armor layer; when θ> 3.5θc, bedload-transport
capacities occur without an armor layer [Gao, 2011]. Based on these results, the two-phase model for identi-
fying the breakup of an armor layer may be modified as shown in Figure 4. However, the asymmetry in
observed transport rates as flows cross this threshold in increasing compared to decreasing flows [Mao,
2012; Tunnicliffe et al., 2000] implies that there is again a problem with interpreting the flow as having capa-
city conditions at that single flow discharge. Besides leading to equation (6), equation (5) has also been used
to estimatemaximum possible sediment load for a potential extreme flood event as elaborated in Gao [2011],
although this approach remains untested.

2.5. Transport Capacity for Suspended Load

Since particles moving in suspension tend to have smaller sizes than those moving as bedload, suspended
load most commonly occurs in alluvial rivers with sand beds. The suspended-sediment-transport capacity
of a given flow has been defined as “the maximum amount of sediment this flow can carry in suspension
under equilibrium conditions for a particular sediment material” [Celik and Rodi, 1991, p. 192]. In such a capa-
city flow, sediment size in suspension is the same as that on the bed and the flow is in sedimentary equili-
brium—that is, deposited particles can be easily replaced by eroded ones and “any further addition of
sediments to the flow leads to a deposition of sediments on the channel bed without an increase of the sus-
pended sediment concentration” [Cellino and Graf, 1999, p. 455].

The complication of determining suspended-sediment-transport capacity arises from the fact that the
transport of suspended sediment is almost always associated with bedload-transport. For a given flow,
distinguishing suspended sediment from bedload sediment is problematic and different criteria have been
used to determine the two modes of transport [Abrahams and Gao, 2006; Allen, 2001; Turowski et al., 2010;
van Rijn, 1984b]. Thus, the two modes of transport may be better described as a continuum rather than as
two distinct classes [Parsons et al., 2015]. Therefore, it is often convenient to estimate the sum of suspended
and bedload, which is conventionally referred to as the total load [Graf, 1971; Hicks and Gomez, 2003;
Julien, 1998].

It has been assumed that these equations that developed theoretically (e.g., using Bagnold [1966], Einstein
[1950], Molinas and Wu [2001], and Yang [2005]) predict suspended sediment (or/and total sediment) trans-
port rates at capacity [Graf, 1971; Hicks and Gomez, 2003]. However, this assumption is not necessarily true
because theoretically based equations often consist of several parameters that need to be determined using
measured data. Unfortunately, in many equations, these parameters have been estimated using data
obtained from flume experiments with fixed beds and variable sediment supply rates [Galeone, 1996;
Kronvang et al., 2012; Kronvang and Bruhn, 1996], which suggests that suspended sediment is not transported
at a theoretical capacity [Celik and Rodi, 1991] (see also the discussion above). Testing the concept of capacity
in this way is thus about testing the auxiliary hypotheses relating to parameterization, rather than the con-
cept itself. For example, the vertical profile of sediment concentration has been quantified using theories
of diffusion-convection and vertical exchange of particles [Graf, 1971; Vanoni, 1975; Yalin, 1972], which led
to various equations that include the Rouse number, Ro= v↓/βκu* where v↓ is the settling velocity of sus-
pended sediment (m s-1), κ is von Kármán’s constant (�), and β is the ratio of the turbulent mixing
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coefficient of sediment to the momentum exchange coefficient (�) [Julien, 1998]. The value of R0 is primarily
controlled by that of β, which is normally determined using measured profiles of sediment concentration in
either flume experiments or natural rivers [Julien, 1998; Simons and Şentürk, 1992; Cellino and Graf, 1999; Graf
and Cellino, 2002; van Rijn, 1984b].

3. The Concept of Transport Capacity in Aeolian Sediment Transport

In the context of aeolian sediment transport, the concept of transport capacity is most often expressed as
being synonymous with the condition of steady state. Steady state implies that the flux of particles (e.g., sand
in saltation) for a given wind shear is limited to an equilibrium value representing the saturation of the fluid
flow with mobile particles. The assumption of steady state has been the foundation for developing models of
sand transport by wind. A great deal of effort has been expended to define the theoretical relationship

between the wind shear stress (τa, Nm�2) or wind shear velocity (u*a, m s�1, where u*a ¼
ffiffiffiffiffiffiffi
a=a

p
, and ρa is

air density (kgm-3)) and the saturated flux of sand over a flat sand bed, typically denoted as qsat, which
has the dimensions mass per unit width per unit time [e.g., Bagnold, 1936, 1941; Kawamura, 1951; Owen,
1964; Kind, 1976; Lettau and Lettau, 1978; Ungar and Haff, 1987; Sørensen, 1991; Sauermann et al., 2001].
Bagnold [1936] derived the transport rate of sand-saturated wind (qsat (kgm

�1 s�1)), which has come to be
considered conceptually equivalent to transport capacity, as

qsat ¼ Ca

ffiffiffiffiffiffi
d
Da

s
ρ
g
u3*a (7)

where Ca is an empirical coefficient for sorting (apparently defined based on wind tunnel experiments:
Ca= 1.5 for uniform sand, 1.8 for naturally graded sand, 2.8 for poorly sorted sand, and 3.5 for a pebbly
surface), d is grain diameter (mm), Da is the diameter of a standard grain (i.e., the one he first did his
experiments on = 0.25mm). The majority of theoretical models builds on the Bagnold [1941] expression:

qsat ¼
u3*a
g

; (8)

although a few models have been developed that are based on mean wind speed ua at a reference height z
[e.g., O’Brien and Rindlaub, 1936; Dong et al., 2011] as opposed to the shear velocity. In both cases it is
necessary to include a threshold term [Bagnold, 1956], which sets a lower limit for transport as a function of
either wind shear or mean wind speed.

In order to test the theoretical models, many experiments have been carried out using wind tunnels and
atmospheric boundary layer flows to evaluate the predictive capability of models [e.g., Chepil and Milne,
1939; Bagnold, 1941; Zingg, 1953; Williams, 1964; Sarre, 1988; White and Mounla, 1991; Greeley et al., 1996;
Butterfield, 1999; Namikas, 2003; Li et al., 2009]. The measurement of the sand flux in these experiments
has been accomplished using traps of various designs and efficiencies as well as active sensors based on cor-
relating flux with acoustic, piezoelectric, or optical signals, thus reflecting an evolution from time-averaged to
point measurements. Total horizontal flux, q, is then calculated by integrating the vertical profile of point
measurements of flux measured at specific heights [e.g., Shao and Raupach, 1992] or using traps with a
continuous slot-like opening that extends to the approximate height of the saltation layer, thus integrating
flux as a function of height during the measurement phase [e.g., Gillies et al., 2006; Dong et al., 2011].

Evaluations of how well measured horizontal flux rates compare with model-predicted values of saturated
flux consistently show pronounced discrepancies [e.g., Sherman et al., 1998]. The reasons for the discrepan-
cies can be traced to difficulties in accurate measurement of the sand flux [Ellis et al., 2009, 2012] and wind
speed as well as in defining model coefficients [Sherman and Li, 2012], including coefficients in the “law of
the wall,” which provides the basis for determining wind shear velocity [Bauer et al., 1992; Sherman and
Farrell, 2008]. Li et al. [2010] observed variability in the von Kármán parameter κ during sand transport,
which is treated as a constant in the log-law expression for boundary layer flow. One consistent observation
from field studies is that the transport is highly variable in time [e.g., Stout and Zobeck, 1997; Baas, 2004;
Davidson-Arnott et al., 2009] and over space [e.g., Bauer et al., 1996; Gares et al., 1996; Ellis et al., 2012], which
suggests that transport capacity is not a time-independent property of the system (see discussion in
section 8).
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The degree of variability in wind flow and sand transport is much reduced in wind tunnels compared to the
atmosphere, but wind tunnels create their own set of constraints on the transport system. The saltation pro-
cess is altered by the dimensions of the wind tunnel, which introduce Froude-number effects [White and
Mounla, 1991]. Durán et al. [2011] identify that a key difference between wind-tunnel and atmospheric
boundary layer flows is the integral turbulent timescales, defined as the time difference beyond which velo-
cities at a single place and two different times become uncorrelated. In wind tunnels the turbulent timescale
coincides with the transport timescale (≈1 s), while in a natural boundary layer with sand transport it is 103

times larger [Durán et al., 2011].

With the observation that transport is typically unsteady in the atmospheric boundary layer, research has
been directed toward an examination of this behavior in the field and in wind-tunnel experiments. Stout
and Zobeck [1997] characterize the intermittency of saltation with a basic turbulence intensity parameter
and a simple wind-strength index. Stout [2004] advances the use of intermittency to estimate the threshold
wind speed based on measurements of saltation activity, mean wind speed, and the standard deviation of
wind speed. The threshold is calculated during periods of saltation and reflects the conditions present at
the time of measurement (e.g., grain-size distribution, surface moisture content, and relative humidity).
The effect of unsteady wind conditions on flux was investigated in a wind-tunnel experiment by Butterfield
[1998], who observed that transport was enhanced during introduced gusting periodicities between 6 s
and 20 s, with rates in excess of those observed for steady winds of the same mean speed.

Spies et al. [2000] present a model developed from the work of McEwan [1991] that allows wind velocity fluc-
tuations to be forced upon the flow. The numerical simulations of Spies et al. [2000] wherein they impose sev-
eral different types of unsteady wind behavior to simulate the effect of a succession of gusts indicated that
transport rate cannot respond to wind fluctuations greater than a frequency of 0.5 Hz. Their model also
showed that the response time of q to increased changes in wind speed was on the order of 2 to 3 s, while
following a decrease in speed, the response time of q was approximately 1 s longer, which they note is in
agreement with experimental data [Butterfield, 1991; Hardisty, 1993]. Based on their modeling results, Spies
et al. [2000] call in to question the legitimacy of modeling the transport system using the approach broadly
defined by equation (8), as u* is an average quantity of the turbulent boundary layer and cannot account for
the effects of the fluctuating components of wind. They do note, however, that statistical properties of the
flow such as the standard deviation and mean value of the fluctuations in wind speed scale with u* and sug-
gest that the influence of turbulence on the transport mechanism be pursued further.

Researchers examining the aeolian transport system have conducted experiments in the field and in wind
tunnels looking for links between turbulence parameters and sediment-transport responses. In this alterna-
tive approach, q is hypothesized to be governed principally by turbulent fluctuations and semicoherent flow
structures [e.g., Baas and Sherman, 2005; Baas, 2004; Walker, 2005; Baas, 2006] and does not invoke the con-
cept of transport capacity. Baas [2006] carried out field measurements of wind and sand-transport activity at
high frequency (20Hz) spanwise to the flow and found that there was a complex interaction between turbu-
lence and sand transport on three spatiotemporal timescales: (1) an external range on the order of 60 s, which
represents longer-term transport conditions that scale with time-averaged wind characteristics (i.e., u*); (2)
the integral timescale and below, which represent different transport patterns that show dependence on
wind speed (streamer families, nested streamers, and clouds with embedded streamers as identified by
Baas and Sherman [2005]); and (3) the scale of individual streamers at times less than 1 s. According to
Baas and Sherman [2005], these streamers are a visual representation of near-surface individual eddies that
have translated down through the internal boundary layer, skim across the surface, and entrain/transport
sand as they move downwind. The length scales of the streamers at their measurement location (i.e.,
width = 0.2m and spanwise distribution = 0.9m�1) appeared to be stable and independent of wind speed
(or wind shear). In this framework for analyzing sediment transport, boundary layer turbulence and the gust
cycles will, to a large extent, control the transport. However, Baas and Sherman [2005] caution that these
properties of the flow may differ greatly for different surfaces even if u* were similar. Although research
has demonstrated that turbulence and sediment transport are closely linked, there remains considerable
challenge in developing transport models that are not based on mean flow and transport rates.

Aside from its use to identify maximal transport rates of sand, the concept of saturated flux, and the devel-
opment of the system to reach an assumed saturation, has also been used in aeolian research to examine
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the time and length scales that the system manifests as it arcs from threshold to the attainment of saturated
flux or the distance it takes to adjust to a new saturated state following a change in surface conditions (e.g.,
surface topography and roughness). Originally identified by Shao and Raupach [1992] as an overshoot effect,
the saturation length scale has been linked to the scaling behavior of dunes affecting their profiles and wave-
lengths [Sauermann et al., 2001; Andreotti et al., 2002a, 2002b, 2010]; however, the hypothesized scaling
dependency for the elementary size of dunes remains controversial [Parteli et al., 2007a, 2007b; Andreotti
and Claudin, 2007; Andreotti et al., 2010].

Andreotti et al. [2002a] present a first-order relaxation differential equation to describe the behavior of these
saturation scales:

T sat
∂q
∂t

þ Lsat
∂q
∂x

¼ qsat � qa (9)

where t is time (s), x is horizontal distance (m), Tsat and Lsat are the saturation time (s) and length (m),
respectively, and qa is instantaneous sand flux (kgm�1 s�1). Tsat defines the timescale at which a saltation
cloud adjusts from one saturated state to another following an abrupt or sudden change in wind speed,
which is quite fast (order of seconds). According to Durán et al. [2011], Lsat defines the length scale over which
the flux reaches saturation as wind encounters an erodible surface, a change in roughness, or the adjustment
from maximum u*a to maximum qa on the stoss side of a developing dune (Figure 6). Andreotti et al. [2010]
argue that if grain inertia is the dominant dynamical mechanism limiting saturation, then Lsat should be
independent of u*a and scale as a function of the drag length (Ldrag (m)), defined as the length needed for a
grain to reach its asymptotic speed and scales as

Ldrag ¼ ρp
ρf

d (10)

where ρp is particle density (kgm
-3) and ρf is fluid density (kgm-3). Using field data on sand-dune wavelengths

and wind tunnel data, Andreotti et al. [2010] demonstrate that once rescaled, Lsat is around 2 × Ldrag within a
50% dispersion (Figure 7).

Hersen et al. [2002] offer a description of saturation length to conceptualize it and its role in sediment trans-
port and bedform development. Briefly, as the entrainment threshold is reached and grains dislodge from
the surface, they will accelerate toward matching the wind speed. During this acceleration phase the grain
covers a distance depending upon its inertia in the transporting fluid, which scales as equation (10). As a grain
descends and collides with the surface, it pushes some grains and splashes up others, and the splashed grains
are, in turn, accelerated by the fluid flow, and as this process repeats, the sand flux increases until (assuming
steady winds) grains cannot leave the surface except as a result of grains being deposited; i.e., the flux is satu-
rated. The flux saturation length is proportional to this inertia length [Sauermann et al., 2001] and will increase
if the length of the saltating trajectories increases (scaling as defined by equation (11)).

erosion

max. u*

max. ζ

λ

max. q

Lsat

deposition

wind

Figure 6. Schematic of the streamlines above a low-amplitude undulation of a sand surface in an aeolian setting. The maximum
u* is located at a distance upwind from the crest (maximum ζ ) proportional to the wavelength λ. The sand flux maximum qsat
is located at a distance Lsat downwind, which separates the zones of erosion and deposition [after Durán et al., 2011].
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Elbelrhiti et al. [2005] observed that the length of protodunes in the Sahara increased linearly with mean grain
diameter for the same wind regime, providing evidence for the control of Ldrag on initial dune size. The the-
oretical prediction of the length at which dunes emerge from a flat sand bed requires linear stability analysis
[e.g., Andreotti et al., 2002a] that incorporates two components [Andreotti et al., 2010]: (1) calculating the
turbulent velocity field around an obstacle of low amplitude [Fourrière et al., 2010] and (2) describing the sand
transport around the saturated state, wherein Lsat is critically important. The outcome of this analysis gives
the relationship between the emergent wavelength of the most unstable mode, Lsat, and the other
parameters (e.g., u*a, aerodynamic roughness in the presence of saltation, and z0). Durán et al. [2011] note
that the prediction of the emerging wavelength is essentially governed by Lsat and not sensitive to the flux
relationship between qa and u*a.

The aeolian transport system extends in a continuum from particles creeping along the surface to those in
reptation (movement along the bed without significant movement up into the airstream) and saltation finally
through to dust-sized particles (<70μm diameter [Pye, 1987]) carried in suspension. These particles are
released from the surface by aerodynamic entrainment [e.g., Kjelgaard et al., 2004a, 2004b; Sweeney and
Mason, 2013], through ballistic impacts of saltating particles with the surface ejecting particles [Shao, 2000,
2004] or created by breakdown of soil aggregates [Kok, 2011]. These modes of transport are considered ana-
logous to the bedload and suspended load for fluvial transport. The ability of the wind to transport the par-
ticles in suspension scales with the wind shear velocity (u*a) balanced against gravitational settling velocity of
the particle, which is a function of size and density. Particles will remain in suspension as long as the fluctu-
ating vertical velocity component (wa′ (m s-1)) exceeds the settling velocity (v↓a (m)), i.e.,

v↓a <
ffiffiffiffiffiffiffi
w’2

a

q
(11)

and wa′ scales with u*a [Gillette, 1977]. Due to limitations on the supply and delivery of dust-sized particles to
the atmospheric boundary layer by constraints associated with surface conditions controlling the release of
particles [Gillies, 2013], the transport of dust-sized particles will always be below capacity. During extreme
dust-storm events, measured concentrations of particles ≤10μm aerodynamic diameter have exceeded
14,000μgm�3 (averaged over 24 h) at Mono Lake, CA [Ono et al., 2011], which undoubtedly means that
hourly concentration values were potentially much higher. Orlovsky et al. [2005] report that during dust
storms in Turkmenistan visibility has been reduced to zero, which would require concentration of the
suspended material to be much greater than any reported measurements. Even for light wind conditions,
concentrations of dust (<50μm geometric diameter) measured during haze events has exceeded
13,000μgm�3 [Gillies et al., 1996]. The capacity of boundary-layer winds to transport dust-sized particles is
likely never approached for terrestrial conditions.
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The assumption of the aeolian sediment-transport system trying to or attaining saturation (i.e., capacity) has
provided an important contribution to the explanation of transport rates, patterns, and bedform develop-
ment [e.g., Durán et al., 2011]. It is clear, however, that this framework cannot explain all aspects of the
mechanism of sediment transport by wind. Recent advances in observing the relationships between
turbulence characteristics in the flow and responses of the sediment to these forcings have provided insights
into the mechanisms of the transport processes [e.g., Baas, 2006], without invoking transport-capacity
concepts. The challenge, however, of the turbulence-controlled framework for sediment transport is in devel-
oping predictive models to quantify sediment transport using some parameterizations for the key turbulence
properties that control the flux of the particles in transport. At this juncture in aeolian process geomorphol-
ogy it would seem that both saturation and nonsaturation approaches still provide critical insights into
understanding the sediment-transport system. It remains to be determined if these frameworks can be
unified or even whether that is a necessary step to take.

4. Sediment-Transport Capacity in Coastal Geomorphology

Although the term sediment-transport capacity has not usually been explicitly employed in the field of
coastal geomorphology, except in work directly by or influenced by Bagnold, the concept is implicit in
the context of work on the rate of longshore sediment transport, which has been primarily developed
from the standpoint of practical applications in coastal engineering. The history of the use of the term
in coastal geomorphology mirrors the debate in the fluvial literature on the relationship of actual to the-
oretical values of transport capacity and raises issues of scales of observation/measurement in the applic-
ability of the term.

Early work developed empirical relationships between driving wave power and longshore sand transport (see
Horikawa [1978, chap. 5.4] for a summary). The major problem in Horikawa’s analysis is the substantial
variance over orders of magnitude in the parameters associating the relationship betweenmeasures of trans-
portability and sand transported [see Horikawa, 1978, Figure 5.4.23; Horikawa, 1988, Table 4.2]. Such variation
has to be seen in terms of the pragmatic attempts by investigators in establishing actual sediment trans-
ported as well as estimating the transport power involved at both prototype (i.e., full) and model scale.
Most estimates of the relationship come from empirical statements of volume changes in profiles (i.e., some
function of gross beach changes) versus wave measurements of often widely changing conditions and direc-
tions. The former, in particular, dealt with gross sediment changes and did not always differentiate between
bed and suspended sediment loads (but assumed that median sand size was representative across the
dynamic range) and had to make some assumptions as to limited or nil-offshore loss and dominant (if not
total) longshore transport on actual beaches. It is also noticeable that initial measurements tended to derive
from “infinitely” straight beaches, whereas most beach systems are not straight and as such induce subtle
and scaled feedbacks in the variation of effective wave power especially after breaking where the strategic
effects of morphodynamic relationships are dominant (see the discussion of Short’s [1999a, 1999b] work).
Likewise, observations of wave power based on limited wave observations (often visual) or even from early
forms of offshore wave recording provide very poor characterization of available work, leading to major
variance between reality and observation. In particular, later differentiation between direct wave thrust
power (at the breakpoint), direct longshore tidal current, and secondary current generation in the presence
of breaking waves all combine to cause poor characterization by use of prebreaking wave parameters.
Set against these difficulties of measurement, it is unsurprising that relationships between transport
rate/capacity and wave power were difficult to obtain. Nonetheless, a body of literature did emerge (espe-
cially from the west coast of the U.S.) that supported a pragmatic positive relationship (at log scale) between
wave forcing and sediment transported.

Typical of this pragmatic approach is that of Caldwell [1956], which is often cited as the initial exemplar work
of relating transport volume to what has become known as wave power:

Ql ¼ 210 P sinα:cosα½ �0:8 (12)

in which Ql is the longshore volume transport of sand (originally measured in cubic yards d�1), P is the
incident wave power (millions of ft-lb/d/ft of shoreline), and α is the angle the breaking wave makes with the
beach (°). Caldwell’s work was trying to link a longshore sediment-transport rate (Ql) to a generative process
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power (P), though later investigators use Pl (defined as the longshore-directed component of P) where Pl is
defined as

Pl ¼ E Cw nð Þb sinαb cos αb (13)

where (E Cw n)b is the wave energy flux or power per unit wave crest length at the breaker point (b) (as a
power term, the units of (ECn)b are Wm-1, though earlier definitions were in dyn s�1m-1). Equation (13) is
based on linear wave theory where (Cw) is the velocity of the waveform, the energy of the wave; (E) is the
wave energy (proportional to the square of wave height); (n) a dimensionless calibration of waveform velocity
(which increases from 0.5 in deep water to 1 in shallow water); and αb is the angle between the breaker crest
line and the shoreline. The sine and cosine terms translate the full onshore wave power to a directional thrust
of wave power obliquely against the shoreline, i.e., the longshore component of wave power (Pl). This type of
wave power derivation has become central as the driver of shoreline transport in subsequent analyses (see
Komar [1999] for a general development of this approach) where a blend of observed versus theoretical
statements of actual longshore transport have been developed to match against this type of statement of
potential longshore power (i.e., transport capacity). A major difficulty has been specifying a highly variable
wave power (fluctuating at seconds to hours) against sediment-transport rates that at the prototype scale
tend to be net statements based on months to years.

Inman and Bagnold [1963] pointed out that equation (13) is both dimensionally incorrect and provides only
an empirical relationship between observed wave power and sand transport, rather than what may be
thought of as a more theoretical transport capacity: a similar confusion to that of the “potential-actual”
debate of the fluvial dynamicists. Inman and Bagnold preferred to drop the Ql measurement for what they
term the “immersed-sediment weight transport rate” (It (m

3 L-1)), which can be related to Ql through

It ¼ ρs � ρð Þga′Ql (14)

in which the use of both a′ (the correction for pore space taken as 0.6) and the (ρs� ρ) term means that only
the immersed density of solid sediment transported is considered. The use of It—rather than Ql—is based
upon the sediment-transport theories of Bagnold [1963, 1966]. These authors proceeded to develop a
theoretical underpinning for It to derive

It ¼ K
ECwn
u0

cosα
tanφ

ul (15)

in which K is the ratio of the rate of work done in transporting sediment in relation to the total wave power
available (�), ECwn is the rate of transport of energy of a wave (Wm�1) as defined in equation (13), u0 is the
mean frictional velocity relative to the bed in the surf zone (m s�1), φ is the intergranular friction angle (°), and
ūl is the mean longshore current velocity (m s�1). Inman and Bagnold further argued that if the position of rip
currents can be assumed to be random in time and space along the beach, then a general expression for the
rate of longshore sediment-transport capacity over a straight beach could be derived. They provide the
rationale by which the immersed sediment weight transported by wave power can be related by

It ¼ K Pl ¼ K ECwnð Þsin αbcosαb: (16)

This relationship is plotted against field measurements of sand transport rates (Figure 8) and shows quite
good agreement, yielding a value for K of 0.7 [Komar, 1999]. K henceforth became a significant concept in
relating alongshore sediment transport to available wave power, underpinning both the original theoretical
work by Inman and Bagnold [1963] and the empirical relations such as that compiled by Horikawa [1978] and
Komar [1999]. Unless the nature and controls on K can be understood, any attempt to move beyond empirical
predictions of longshore transport rate toward any process-based notion of longshore transport capacity will
be hamstrung.

It has been suggested that Kmight vary with grain size [Tanner, 1979] and hence provide comparability with
(limitations of) transport capacity formulae in aeolian and fluvial systems. However, there is little support for
the notion that K decreases with D50 within the range of sand-sized sediments [Komar, 1980], though some
(but questionable) support that such a relationship might exist if the size range is extended to include gravel
and shingle [Komar, 1999]. However, data from gravel beaches are limited, but the increasing influence of
particle shape with increasing size (within the gravel-cobble size range [Orford and Anthony, 2013]) means
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that a singular K value is unlikely. Other
research has proposed that K depends
on beach slope and wave steepness
as well as grain size according to

K∝S
Hb

D50

� �
Hb

L∞

� �
(17)

in which S is slope (mm�1), Hb/L∞ is a
dimensionless measure of breaking
wave steepness (breaking wave height
(L) over offshore wavelength (L)), and
Hb/D50 is the dimensionless scaled
wave sediment size parameter (L/L).
Furthermore, given that there is a
positive relationship between sediment
size and beach slope, the relationship
will confound any attempt to find a
simple relationship with grain size.
Studies by Saville [1950], Özhan [1982],
and Kamphuis [1991] have produced
conflicting results on the relationship
with wave steepness, but the suggestion
is that K decreases with wave steepness
(i.e., K reduces as short-period storm
waves give way to long-period swell
waves). Equation (17) also implies that
transport rate increases with beach
slope. However, given the advances in
understanding beach morphodynamics
[Short, 1999a], the above relationship
also indicates that K is proportional
to whether the beach system is
reflective (steep and coarse sediment)

or dissipative (lowest slopes and smallest sediment). The implications for secondary current generation within
a dissipative morphodynamic regime and the ensuing associated three-dimensional beach morphology
changes with this energy domain underlie the difficulty of asserting a single K value across beach sediment
size range. It also underlies the appropriateness of considering subsets of longshore transport capacity related
to position in the tidal range and the ensuing potential of more consistent longshore beach morphologies
where transport vectors both gross and net may be at base, unidirectional. Post–wave breaking on a reflective
coarse clastic beach (subgravel size) may be the simplest context for K analysis. The likelihood of this context
is low and only serves to indicate the difficulty of assessing the connection between actual and theoretical
transport capacity.

The range and debate about the value of K may also reflect the possibility that the characterization of the
dynamics of power to transport is still not adequately specified both in terms of actual parameters used
and/or resolution of measurement of both sides of the power transport equation.

In recent years there have been attempts to resolve coastal sediment-transport rates with better determina-
tion of transported sediment volumes as well as clearer characterization and measurement of process vari-
ables. Kamphuis [1991] proposed a transport rate formula, the form of which was revised by Mil-Homens
et al. [2013] as

Ql ¼ 0:15 ρs
ρs � ρð Þ T0:89p tan βð Þ0:86 d�0:69

50 H2:75
s:br sin 2 θbrð Þ½ �0:5 (18)

where Ql is longshore sediment (dry mass in kg s�1), Hs,br is significant wave height at breaker line (m), θbr is
wave angle at breaker line (°), d50 is the median particle size in the surf zone (m), β is the beach slope (°), and
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Tp=peak wave period (s). Note that the immersed weight has been changed to solid weight of sediment
transported, while the explicit value of K has been lost, given the better specification of calculated driving
power based on peak wave period and significant (H67%) breaking wave height. However, a dimensionless
calibration element (0.15) is still required to constrain the predicted transport rates.

van Rijn [2014] provides the latest comprehensive analysis of existing transport equations and transport-rate
data for both coastal sand and gravel systems. In this detailed examination of process he provides the following
sediment-transport predictor equation for shorelines, based on the same approach as Kamphuis and Mils-
Homens, but which has the ability to be applied across the sand to coarse gravel (0.1–100mm) sediment range:

Ql ¼ 0:00018 K swell ρs g
0:5 tan βð Þ0:4 d�0:6

50 H3:1
s:br sin 2 θbrð Þ (19)

As regular swell waves yield larger longshore transport rates than irregular wind waves of the same height (by
a factor of 1.5), van Rijn proposed to take this effect into account by a swell correction factor (Kswell). This use
of K is only loosely related to the earlier debate of K, as this K value is certainly not a constant and is designed
to amplify the wave power potential of longer-period waves, rather than directly calibrate the potential ver-
sus actual wave power of the model. He identifies the value of Kswell based on the percentage of swell waves
(pswell) within the incident wave spectrum, such that as Kswell = 1.05 for pswell = 10%, Kswell = 1.1 for
pswell = 20%, and Kswell = 1.5 for pswell = 100%. If swell is absent (or unknown), then Kswell = 1. The power of this
predictor is in its highly reduced variance between predicted and observed transport across the sand and
gravel size range [van Rijn, 2014, Figure 11] where about 80% of the 22 data points are within a factor of 2
of the 1:1 line. This is the current “state of art” for predicting longshore sediment transport and is a substantial
improvement on the variance of the Horikawa [1988] statement.

All the approaches above are what can be termed computing a “total energy” capable of bulk transport. They
apply a wave-energy parameter and angle of wave incidence to produce an “alongshore component” of
wave power. Alternatively, there are a few studies that attempt to establish a modified shear stress/stream
power formula based on the formulae that were originally used for estimating transport rates in rivers.
Morfett [1990] explains the basic physics of this approach. Investigators have to change the flow field from
a stream to that of a wave [e.g., Bijker, 1971; Swart and Fleming, 1980; Bailard, 1984]. This approach is an
attempt to model the combined bed and suspended loads as a consequence of the distribution of transport
rates in the surf zone and relating sediment transport to the rate at which energy is being dissipated per unit
area, D. In an approach that draws directly upon the fluvial literatureMorfett [1990] proposed an equation for
longshore sediment transport based upon the notion of virtual wave power, drawing uponMcDowell’s [1989]
use of virtual stream power Pstr (Wm�2) in which

Pstr ¼ ρ u3� � u3*cr

� �
(20)

where u* is shear velocity (m s�1) and the subscript “cr” refers to the shear velocity at the threshold of
sediment motion. The use of a third power on the shear velocity has indications of the continuity of Bagnold’s
approach in thinking of effective powers of shear stress from other sediment-transport regimes. Morfett
[1990] then derived the equation

Il ¼ K P sin αð Þ0:75D�
h i

(21)

where

P ¼ P1:5þ g�0:833 ρs � ρð Þ�0:5ν0:167: (22)

where Il is the transport rate (N s�1), P+ is the wave power that is dissipated in breaking and in overcoming
friction (Wm�2), and ν is kinematic viscosity (m2 s�1). D* is a parameterized particle size (dimensionless),
which Morfett developed from an empirical formulation based on themedian grain size (D50), relative density
of immersed sediment, and water viscosity. He derived D* as

D� ¼ D50 g
ρs
ρ

� 1

� �
ν2

� �0:333
(23)

Morfett reduced the overall equation to a power-law relationship (using log-transformed best fit linear
regression) [Morfett, 1990, Figure 7] of the form

Il ¼ K P� D� (24)
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where P* is P (sinα)0.75. Once again, however, the equation depends on the constant K for which only an
empirical determination based upon the range of observed transport rates is available. Morfett identifies K as
10.5 × 103 as a best fit regression constant. Hence, his final transport based on a dissipative wave energy
model is

Il ¼ 10:5 � 103 P� D� (25)

Equation (25) attempts to provide a physical attempt at developing a transport-capacity statement for
shorelines; however, its determination is dependent on the ability to develop a statement of energy dissipa-
tion at the shoreline which is somewhat intractable considering the easier measurement required for the bulk
transport equations (e.g., equation (19)). This difficulty may explain why the literature has tended to expand
on more defined and precise bulk-rate equations [e.g., van Rijn, 2014], rather than the energy-rate determi-
nations as exemplified by Morfett.

5. Sediment-Transport Capacity in Hillslope Studies

The study of sediment transport on hillslopes comes mainly from attempts to develop process-based models
to predict soil erosion. Early work was carried out by the U.S. Department of Agriculture Soil Conservation
Service as a result of the Dust Bowl of the 1930s, resulting in the studies of Zingg [1940] and Musgrave
[1947] that predicted sediment yield as a function of discharge, slope, and soil characteristics. The first explicit
use of the concept of transport capacity seems to have been by Ellison [1947] in the first of his papers rede-
fining soil-erosion studies. No citation is made of previous usage of the term, and its derivation is related to
empirical observations made in one of Ellison’s own experiments. Meyer and Wischmeier [1969] noted that
Ellison’s ideas had not been adopted, so little progress had been made in the intervening two decades in
developing the empirical data that might underpin his approach. They consequently developed his concep-
tual model more fully (Figure 9) and made the first attempt to apply it mathematically. Using the relationship
of Laursen [1958] from fluvial experiments, they estimated the transport capacity of flow as a function of flow
velocity or discharge, and thus, the Meyer and Wischmeier paper seems to be the first instance when the
fluvial literature is used to inform hillslope-erosion models. Although the idea of a transport capacity of rain
is introduced by Ellison [1947] and then followed up by Meyer and Wischmeier, it has not subsequently been
used, probably based on the assumption that measured rainsplash is always at capacity. The distinction
between interrill and rill erosion, drawn by Foster and Meyer [1972] and Meyer et al. [1972, 1975], is crucial
in underpinning the theory of transport capacity as applied to studies of erosion. As such, it underpins all
but the most recent erosion models, although the distinction probably hides more of a continuum of beha-
viors [Wainwright et al., 2008].

Transport capacity of interrill flows has been little investigated. Moore and Burch [1986] assumed that unit
stream power as defined by Yang [1972] could be used to predict capacity in a continuum between interrill
and rill flows, although most of their evaluations were on data sets relating to rilled slopes. They also demon-
strated [Moore and Burch, 1987] that this form is conceptually equivalent to the standard form derived by
Julien and Simons [1985] from dimensional analysis:

qs ¼ ζ Sλ qμ iξ (26)

where qs is unit sediment discharge (assumed at capacity) (kgm�1 s�1);
q is unit flow discharge (m2 s�1);
i is rainfall intensity (m s�1);
ζ , λ, μ, and ξ are empirical parameters.

where λ= 1.3 ψ or 1.375 ψ and μ= 1 + 0.4 ψ or 1 + 0.25 ψ, depending on conditions; ψ is the exponent in
Yang’s relationship between transport capacity and (excess) unit stream power. More recent empirical
studies [Everaert, 1991] and overviews [Prosser and Rustomji, 2000] have also supported the use of
equation (26), although most experimental approaches have assumed that measured sediment transport,
qs in equation (26), is equivalent to transport capacity without otherwise demonstrating the equivalence
[e.g., Everaert, 1991].

The development of a process-based understanding of erosion and sediment transport by rillflow that is
embedded inmost process-basedmodels of soil erosion of the later twentieth century has taken its lead from
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the literature on river flow. The concept of transport capacity of rillflow is, therefore, an inherent component
of these models. However, to transfer, largely empirical, equations developed for flow on very shallow gradi-
ents that is deep in relation to the size of most sediment transported to flow that is shallow and on typically
much steeper gradients has proved problematic. Foster and Meyer [1972] developed a theory of erosion actu-
ally based on the assumption that under steady-state conditions:

DF

DC
þ GF

TC
¼ 1 (27)

where DF is the net flow-detachment rate (kgm�2 s�1);
DC is the detachment capacity of the flow (kgm�2 s�1);
GF is the sediment load in the flow (kgm�1 s�1);
TC is the transport capacity of the flow (kgm�1 s�1).

By defining the detachment capacity as a linear relationship of transport capacity (DC= k TC), they produce
the relationship

DF ¼ k TC � GFð Þ (28)

It should be noted that this approach was arrived at by (a) a qualitative appreciation of laboratory and field
observations and (b) an analogy that if transport capacity is a function of shear stress raised to a power
(a simplified Yalin equation; see discussion below), then so too should detachment rate, with k in equation (28)
simply the ratio of the coefficients in the detachment and transport-capacity relationships. At no point did
they demonstrate that this analogy was supported empirically or theoretically. As early as Bennett [1974]
pointed out that this argument was one that needed testing more fully, something that Wainwright et al.
[2008] noted was yet to happen over 30 years later. Although some limited attempts have been made to
verify the relationship [Rice and Wilson, 1990; Cochrane and Flanagan, 1996; Merton et al., 2001], more
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Figure 9. Conceptual model of soil erosion derived by Meyer and Wischmeier [1969] from Ellison [1947] and other sources.
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detailed experiments by Polyakov and
Nearing [2003] and Schiettecatte et al.
[2008] demonstrate that the linear
relationship in equation (28) does not
hold (Figure 10).

In the Water Erosion Prediction Project
(WEPP) model [Nearing et al., 1989] soil
detachment in rills is modeled as

DF ¼ Dc 1� GF

Tc

� �
(29)

which is a straightforward rearrangement
of the Foster and Meyer equation
(equation (27)). Transport capacity is then
determined from a simplified form of the
Yalin equation, of the form

Tc ¼ ktτ1:5f (30)

where τf (Pa) is the hydraulic shear
acting on the soil and kt (m

1/2 s2 kg1/2) is
a transport coefficient.

Similarly, in the European Soil Erosion Model (EUROSEM) [Quinton, 1997; Morgan et al., 1998]:

DFE ¼ kf wv↓ TC � Cð Þ (31)

where DFE (m3 s�1m�1) is the net detachment rate, kf (dimensionless) is a flow detachment efficiency
coefficient, w (m) is flow width, v↓ (m s�1) is particle settling velocity, TC (m

3m�3) is transport capacity, and C
(m3m�3) is sediment concentration. Transport capacity is determined from the work of Govers [1990] who
found empirically that for particles between 50 and 150μm, transport capacity could be expressed as

TC ¼ c ωY � ωYcrð Þη (32)

where ωY (m s�1) is Yang’s unit stream power (defined as u S), ωYcr is critical Yang’s unit stream power
(= 4.0mms�1), and c and η are experimentally derived coefficients that depend on particle size. The Limberg
Soil Erosion Model [de Roo et al., 1996] uses the same derivation, based on the work of Govers [1990]. GUEST
(Griffith University Erosion System Template) bases its transport-capacity equation on Bagnold stream power
[Misra and Rose, 1990; Rose et al., 1998].

Both equations (29) and (31) share the assumption made by Foster and Meyer [1972] that detachment varies
linearly with the difference between sediment in transport and transport capacity, though no published evi-
dence supports this assumption [Wainwright et al., 2008, p. 816]. Equation (29), taken from Smith et al. [1995],
adds amodification to the detachment rate to take account of the fact that previously detached sediment will
return to the bed, thereby reducing the sediment load. However, this modification is based upon the settling
velocity of the particles and, therefore, assumes that all transported sediment is in suspension, which
Wainwright et al. [2008] have demonstrated is unlikely to be the case for all but the finest sediments on most
hillslopes under overland flow.

Equation (27) was proposed by Foster and Meyer [1972] and has empirical support in the work of Alonso et al.
[1981]. However, later work by Moore and Burch [1986] and Govers [1992] shows the Yalin equation to
perform relatively poorly in laboratory experiments of rillflow, and Govers further argues that all excess-shear
formulae are unsuitable for rillflow. The form of equation (30) assumes that shear stress is well in excess of the
critical shear stress to entrain particles. Inasmuch as the initiation of rills is defined by the point at which
critical shear stress is exceeded, an equation for transport capacity that does not apply to this situation would
seem inherently inappropriate. Govers [1992] further suggests that the apparent success with the Yalin
formula achieved by Alonso et al. [1981] may lie in the restricted range of conditions tested, specifically that
no gradient exceeded 0.07mm�1, which is scarcely representative of hillslope erosion.
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Huang et al. [1999] carried out experiments where they could control the bed hydrology and found that iden-
tical flows where the slope had net drainage had lower estimated transport capacities than those with net
seepage. Sander et al. [2007] used the Hairsine-Rose model to reinterpret these results as an emergence of
an (effective) set of transport capacities under different conditions in that the Hairsine-Rose model does
not define a transport capacity explicitly (as Huang et al. [1999] had also suggested for their results). They
interpreted the results as reflecting the depositional layer protecting the bed once deposition starts to occur.

Polyakov and Nearing [2003] demonstrated that the Hairsine-Rose model would produce different values of
transport capacity which they interpreted as hysteresis based on whether the value was reached from an
excess or a deficit of sediment transport. They also noted that “transport capacity implies uniqueness”
[Polyakov and Nearing, 2003, p. 42] and thus suggested that the above mentioned variable transport capaci-
ties for a similar flow and sediment condition suggest that these flows are not all at a putative capacity, the
familiar situation discussed earlier in section 2.1 in alluvial rivers. Although one solution would be to use
equation (3) or (5) to determine the unique transport capacity, it is important to recognize that neither of
these approaches has been tested in hillslope settings. Some reasons fluvial approaches might not immedi-
ately transfer to the hillslope domain are elaborated in section 8.

Polyakov and Nearing also suggested that this mechanism might be an explanation for their results but pro-
posed that they could also be due to changes in friction following deposition, protection of the bed by mov-
ing bedload, and differences in the energy required to start entrainment compared to continuing transport,
as discussed in relation to aeolian sediment transport (and indeed, see Ellison [1947] on hillslopes). An alter-
native explanation of these patterns is the apparent emergence of multiple putative transport capacities as
discussed in the section on bedload in rivers, and it is impossible to evaluate the appropriate explanation
for hillslopes with the data available.

Equation (32) is derived from experimental work by Govers [1985, 1990, 1992]. However, in reporting this
work, Govers noted that no equation that derives from the fluvial literature performed well over the full range
of conditions that he tested and that significant gaps in the empirical base remained. Of note is the fact that
Govers found the exponent η in equation (26) to be positive, a result also observed for interrill flow by Everaert
[1991] implying that if critical stream power is fixed, then transport capacity increases with particle size, which
is not intuitively obvious (and contradicts Gilbert [1877] as well as the later fluvial literature discussed above).
Again, although further work is required to evaluate whether equation (3) or (5) could be used to overcome
the limitations identified by Govers, there are limitations in relation to relative depth of flow that suggests
such work would be fruitless (see section 8).

The significance of particle size for transport capacity is addressed poorly for rillflow. Julien [1987] suggested
that estimates of transport capacity will be highly sensitive to particle size. The problem can be well
expressed in a statement taken from Govers [1990, p. 45]: “Flow incision…will only occur when the transport
capacity of the flow is sufficiently high to evacuate all the material that is transported into the flow path from
the interrill areas.” Since detachment in interrill areas is highly size selective and largely controlled by rainfall
characteristics, its relevance to flow incision must be highly specific to particular soil characteristics. Ferro
[1998] reinterpreted the grain-size dependence in Govers’ and others’ data by means of the Shields para-
meter and went on to suggest that the value should also be a function of flow depth relative to bed particle
size (see discussion on relative roughness below). Beuselinck et al. [1999, 2002] suggested that the grain-size
dependency increased above a threshold value and was not clearly distinguishable at lower flows. More

recently, Zhang et al. [2011] estimated that transport capacity was proportional tod�0:345
50 for a series of labora-

tory experiments on steep slopes (8.7–42.3%) but without the presence of rainfall.

6. Sediment-Transport Capacity in Débris Flows

The transport-capacity concept as developed for fluvial applications is not stated explicitly in most débris
flow studies. The term “transport capacity” is often used without clear reference to established definitions
or seminal papers in other literatures and is sometimes used to identify the overall volume of sediment (mag-
nitude) of débris flows. The first explicit mention of “sediment-transport capacity” in the case of a débris flow
is given by Rickenmann [1990, 1991]. He studied hyperconcentrated flows and debris flows using a recirculat-
ing system in a steep flume and explored the effect of an increasing fluid density and viscosity on the flow
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behavior and the sediment-transport capacity. Even if hyperconcentrated flows are usually considered two
phase, non-Newtonian flows, using a conventional (Newtonian) approach, he showed that an increased
fine sediment concentration and flow density produced an increased coarse transport rate. However, at
the highest suspended sediment concentrations, a decrease in the bedload-transport rates was observed
and related to macroviscous effects. In a recent paper, Shu and Fei [2008, p. 973] explicitly state that the
sediment-transport capacity for a hyperconcentrated flow is “the total amount of sediments that water
flow can carry” and developed a formula for sediment-transport capacity of hyperconcentrated flow, in
part based on Bagnold’s [1966] sediment-transport efficiency model for suspended transport. Based on
the equilibrium equation of turbulent kinetic energy for solid and liquid two-phase flow, they obtained
a structural formula for sediment-transport capacity, which includes the flow viscosity and flowing resis-
tance coefficient for hyperconcentrated flows:

Sv* ¼ p
f μrð Þ
κ2

fm
8

� �1:5 γm
γs � γm

U3

g R v↓

" #N

(33)

where Sv* is the sediment concentration at capacity (m3m�3);
p is an empirically determined coefficient (�);
μr is fluid viscosity (Pa s);
fm is a coefficient of resistance (�);
γm is the specific gravity of the flow (kgm�1 s-2);
γs is the specific gravity of the sediment (kgm�1 s�2);
U is vertical mean flow velocity (m s�1);
R is hydraulic radius (m);
N is an empirically defined coefficient (�).

Note that despite the theoretical derivation of this equation, it still contains two terms—p and N—and a func-
tion—f (μr)—that need to be derived empirically is heavily dependent on analyses of standard fluvial flows
and assumes that the specific gravity of the flow is unchanging as sediment transport increases.

It should be stressed that there are no widely accepted criteria that unequivocally differentiate between
hyperconcentrated and débris flows (and by extension between hyperconcentrated and other water flows).
Sediment concentration has been used to provide a rough distinction between the phenomena, and débris
flows are usually considered to contain more than half their particles coarser than sand [Pierson and Costa,
1987]. However, débris flows are pulsating events, often anticipated by liquid surges and followed by mud
surges, which lead to rapid variation of coarse sediment concentration, velocity, and viscosity [e.g., Iverson,
1997; Marchi et al., 2002]. Generally, in natural streams débris flows tend to occur when slope is higher than
0.2mm�1 [Takahashi, 1991], but at these same slopes bedload and hyperconcentrated flows can occur as
well. By analyzing débris flow, hyperconcentrated flow and bedload-transport events that occurred in
Switzerland in 2005, Rickenmann and Koschni [2010] found a smooth, increasing trend between processes,
if the transported sediment volumes normalized by the effective runoff volumewere plotted versus the chan-
nel slope. This smooth transition between transport processes seems also supported by comparative appli-
cation of bedload- and débris flow-derived formulae applied to calculate sediment concentration as a
function of channel slope [Rickenmann, 2012]. Prancevic et al. [2014] suggest that this continuum can be
understood in terms of a continuum of behaviors as Shields stress and slope angle vary, although more
empirical work is required to develop their initial, experimental results.

The focus on débris flow volume is well justified because its quantification is of primary importance for hazard
mapping. In field studies débris flow volume can be roughly estimated from postevent field survey or accu-
rately quantified using LiDAR data [Scheidl et al., 2008]. Débris flow volume is required for developing empiri-
cal relationships between planimetric deposition area and débris-flow volume and ultimately for relating
geomorphological characteristics of fans to potential runout areas [Iverson et al., 1998; Berti and Simoni,
2007; Scheidl and Rickenmann, 2010]. Furthermore, the volume is needed for assessing precisely the débris
flow volumetric sediment concentration (CV; volume of sediment divided by volume of water and sediment),
which is required as input parameter in widely used débris-flow- and hyperconcentrated-flow-routing mod-
els [e.g., Hsu et al., 2010]. Because in practical applications débris-flow volume is generally the unknown value,
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the volumetric sediment concentration needs to be estimated as the ratio between the equilibrium concen-
tration (CD) and the volume concentration of solid fraction on the bed (C*), for which the porosity of sediment
in the bed can be used as a proxy. Expressed in terms of discharges, the débris-flow discharge at equilibrium
conditions (QDF (m

3 s�1)) could be calculated as

QDF ¼ Q
C*

C*� CD
(34)

where CD is the equilibrium concentration (kg kg�1) and C* is the volume concentration of solid fraction on
the bed (kg kg�1).

The equilibrium concentration (CD) depends on the approach used to describe the rheological nature of
the débris flow. It has been defined by Takahashi [1978, 1980], who suggested that the nature of débris
flows is dominated by the collision between the coarse particles rather than the interstitial fluid.
Takahashi’s inertial-type approach is based on Bagnold’s [1954] dispersive regime and allows the velocity
profile to be calculated, as well as the equilibrium grain concentration and the depth of a quasi steady
state débris flow. Takahashi defines the equilibrium concentration as the concentration of a débris flow
that produces neither erosion of the bed nor deposition onto the bed. Assuming a uniform distribution
of sediments over the whole depth, the equilibrium concentration (CD) is ultimately a function of the
bed slope and can be calculated as

CD ¼ ρf S
ρs � ρfð Þ tan φ � Sð Þ (35)

in which φ is the collision angle of grains which, according to Bagnold [1966], can be approximated with the
internal friction angle of the sediments.

Even if in the model of Takahashi [1978] the role of interstitial fluid can be neglected, later studies suggested
that the macroviscous flow regime should be taken into consideration [e.g., Davies, 1988b] and that cohesion
and variable concentration and pressure over the flow depth should also be considered [Chen, 1988].
Attempts have been made to investigate intergranular stresses using a Coulomb mixture model, which
accounts explicitly for stresses and interactions of distinct solid and fluid constituents and eliminates the
need to specify rheologies of complex, multiphase moisture [Iverson and Denlinger, 1987]. Furthermore, from
a series of experiments where liquid and solids were recirculated over a mobile bed, Armanini et al. [2008]
showed an unstable stratification of collisional and frictional regimes across the flow depth, with implications
for grain concentration and thus transport capacity. As to the calculation of equilibrium sediment concentra-
tions, another alternative and promising theoretical approach based on the maximum entropy principle has
been proposed by Lien and Tsai [2003]. Overall, many investigators have modeled débris flows specifying
different rheological rules that govern flow behavior, and each model determines the sediment concentra-
tion at equilibrium.

In general, débris-flow routing can be simulated solving a momentum-conservation equation for the mixture
of solids and fluid, mass conservation equations for the liquid phase and solid phase, and an equation for bed
elevation change. Irrespective of the rheological approach to define the debris flow, which has to be reflected
in the momentum-conservation equation [Takahashi, 2009], the débris-flow volume increases with bed
erosion or decreases with deposition as calculated by the mass conservation equations. Takahashi et al.
[1987] implemented formulae predicting erosion or deposition depending on the deficit or excess of sedi-
ment concentration in the débris flow with respect to the equilibrium volume as calculated by

E
vD

¼ αD
CD � C
C*� CD

h
d

E ≥ 0ð Þ
E
vD

¼ βD CD � Cð Þh
d

E < 0ð Þ
(36)

in which E is the erosion (positive)/deposition (negative values) rate (m s�1), vD is the average velocity of the
débris flow (m s�1), and αD and βD are experimental coefficients. Although Takahashi et al. [1987] describe
some of their approach as having been derived by analogy with the bedload literature, they do not cite any of
it explicitly. In the same way as the derivation of equation (35) is from theory (as with the analogous equation
(27) developed for soil erosion by Foster and Meyer [1972], but which is not directly cited by Takahashi et al.
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[1987]), there seems to have been little empirical testing of the model, especially its dependence on the
definition of empirical coefficients.

Subsequent numerical models added to this approach, introducing, for instance, the effects of bed sedi-
ment size on bed erosion rate [Egashira et al., 2001]. As shown by Papa et al. [2004], the vertical erosion
rate is inversely proportional to the grain size of the channel bed. Also, the critical condition for the entrain-
ment of a grain from the bed depends on the difference between the total shear stress and the yield stress
acting on the bed surface and depends on sediment concentration of the débris flow. Despite these
flume-based insights on drag forces needed to entrain sediments from the channel bed, sediments are also
destabilized by macroscale processes due to undrained loading, impact loading, liquefaction, and stream-
bank undercutting [Hungr et al., 2005], and very little is known about the shear strength of bed sediments,
bed stratigraphy, and pore pressure due to saturation. To overcome these mechanistic limitations, the
magnitude of a débris flow is often predicted using empirical algorithms based on the geometry of the
routing colluvial channel [e.g., Ikeya, 1981; Hungr et al., 1984] or the size of landslides-prone areas
upstream. An alternative approach, which also allows the association of a frequency to the magnitude of
the expected event, is based on the analysis of rainfall thresholds able to trigger débris flows [Jakob and
Weatherly, 2003].

It should be noted that all numerical and flume-based studies on débris flows and most of field empirical
observations assume unlimited sediment supply and thus that equilibrium concentration (and thus a
steady-state approximation to capacity analogous to that used in some of the fluvial literature) is always sup-
posed to be reached. This assumption might appear reasonable in risk-based studies because hazard map-
ping or engineering countermeasures are better based on worst-case scenarios. However, even if such
powerful events are likely to convey as much sediment as they can, relatively few geomorphological studies
have questioned the supply-unlimited assumption. Bovis and Jakob [1999] stated that there are weathering-
limited basins that require a certain “recharge period” prior to each débris flow event and exhibit a lower fre-
quency of débris flow activity if compared to transport-limited basins, where the frequency andmagnitude of
débris flow events are controlled primarily by hydroclimatic triggering [see also Carson and Kirkby, 1972]. In
many cases, the interval from the occurrence of the last débris flow can help in estimating the magnitude of
the next event [Jakob et al., 2005], if activations of new sediment sources at the basin scale due to extreme
events are excluded (e.g., widespread landslides). The recharge of sediments occurs mainly along the
débris-flow transit channel, where sediment storage and availability can be inferred by cycles of aggradation
and degradation [Jakob et al., 2005; Fuller and Marden, 2010; Berger et al., 2011].

7. Sediment-Transport Capacity of Glaciers

The concept of transport capacity has not traditionally been prominent in glacial geomorphology. Indeed,
the term has been so poorly adopted by the glaciological community that it has sometimes been used in
quite different ways. For example, Hagen [1987] uses transport capacity to describe the potential flux of ice
through a surging glacier system, focusing on the glacier as a transporter of ice, rather than as a transporter
of sediment.

Nevertheless, Boulton [1975], arguing that the lack of a theoretical framework for sediment transport by
glaciers was inhibiting progress in the field, sets about providing such a framework for temperate glaciers.
Arguing from Glen [1952] andWeertman [1957, 1964], he derived an expression for the “transporting power”
of a glacier as

Pt ¼ Vp’ Vi

Vi � Vp’
	 
 τ � Vi

A R4

� �0:5
� �

N μ’
(37)

where Vp′= is the mean velocity of the débris entrained by the glacier (m a�1);
N=effective pressure (N);
Vi=basal ice velocity (m s�1);
R=bed roughness (�);
μ′= average coefficient of friction (�).
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The coefficient A is given as

A ¼ KCB
Lρi

� �1
2

(38)

where L= latent heat of fusion of ice (J g�1);
K= thermal conductivity of ice (Wm�1 K�1);
ρi= ice density (kgm�3);
B= the constant in Glen’s flow law (�);
C= a constant relating pressure and resultant lowering of the freezing point (-).

However, this kind of work has more often focussed purely on entrainment (or deposition) mechanisms and
has rarely given explicit consideration to sediment transport capacity. Iverson [2000] calculated the rate of
infiltration regelation into subglacial sediments. For débris-rich ice formed by regelation around obstacles
to flow, Lliboutry [1993] calculated the likely thickness of a steady-state layer of regelation ice. Calculations
of this type could be put to the task of estimating some aspect of transport capacity, but this is not a direction
that has been taken to any significant degree. Subsequent work on sediment-transport mechanisms by ice
[e.g., Melanson et al., 2013] is not founded on concepts of transport capacity or power.

One review that does explicitly consider sediment-transport capacities of the glacial system is provided by
Alley et al. [1997]. Their focus was on how glaciers entrain and transport basal sediment, and they focus exclu-
sively on the transport capacities of various components of the basal environment: subglacial streams,
débris-rich basal ice, and the mobile subglacial débris layer. Although it does provide an illustration of some
of the issues facing studies of glacier transport capacity, this approach excludes major areas of the whole-
glacier sediment transport system such as the supraglacial and englacial débris transport, which can be very
important in many glacier settings. It also raises the problem of defining what we mean by glacier sediment
transport: is the deforming subglacial layer part of the glacier? Is a meltwater stream within the ice part of the
glacier? What about rock glaciers?

In the analysis by Alley et al. [1997] the concept of an actual capacity is focussed mainly on the water sections
of the system. In other parts of the basal system (basal ice and subglacial débris) the focus is on entrainment
capacity or potential entrainment rates. Sediment transport by glacial water streams involves essentially the
same issues as fluvial sediment transport, except that subglacial environments have special conditions
including sections under pressure and highly variable discharge (Figure 11). Alley et al. define transport capa-
city as “volume of sediment transported per time by the system, for a given distribution of grain sizes if the
supply of sediment is not limiting” [Alley et al. [1997, p. 1018]. They consider a range of previous studies of
bedload transport including the assessment by Gomez and Church [1989] that Bagnold’s [1980] equation best
predicted bedload-transport rate. Alley et al. [1997] also consider pipe flow, which is relevant for flow in
subglacial tunnels. In glacier systems typically steep gradients with high headwater pressures and high but
variable discharges, including high-frequency discharge pulses, make glacial meltwater streams particularly
effective transporting agents. Subglacial water flow and sediment processes are very different if surface
meltwater can reach the bed, so predicting the capacity of the system would depend on knowing about
the connectivity of surface, englacial, and basal drainage networks. This connectivity is likely to be variable
over time and will evolve on a seasonal basis. It will also vary between glaciers. Nevertheless, Alley et al.
[1997] do review a substantial set of potentially useful approaches to identifying at least some notion of a
transport capacity for the fluvial components of the glacial system. However, because glaciers involve four-
phase flow (water, ice, air, and sediment), it is unlikely that any simple approach to estimating transport rate
or capacity could ever be achieved.

For other components of the basal sediment system, however, Alley et al. [1997], and others before and since,
have greater difficulty even approaching a theoretical prediction of sediment fluxes. For example, on the
question of predicting sediment transport through the deforming subglacial layer [Alley et al. [1997,
p. 1021] suggest that “without an accurate flow law including controls on viscosity, one cannot calculate deb-
ris fluxes from first principles.” On predicting sediment transport by glaciotectonic mechanisms they write
“Despite the fact the glaciotectonic structures are common in glaciated regions… no general theory has
been advanced to account for the amount of debris transported in front of or beneath glaciers in this
way.” As for transport of débris within basal ice, there is still no clear agreement even on the processes by
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which débris can be entrained, let alone any quantitative estimation of the potential débris flux through the
basal layer. Several studies [e.g., Hunter et al., 1996; Knight et al., 2002] have measured actual débris flux
through the basal layer by combining measurements of débris content and ice velocity, but these studies
have not extended to identifying theoretical limits. The aim of these studies has been to explore how much
débris glaciers do carry, not how much they can carry.

One reason for ignoring the concept of capacity might be that glaciers are immensely complicated systems
for which we still lack an understanding of many fundamental processes. There is still neither a clear flow law
for glaciers [Alley, 1992] nor a comprehensive understanding of themechanisms of glacial débris entrainment
and deposition [Evenson and Clinch, 1987; Alley et al., 1997]. Both would be required for an analysis of glacier
transport capacity, which would need to address many variables beyond a simple fluid mechanics of ice-
débris interaction. Evenson and Clinch [1987, p. 112] suggested that “glacier margins are probably the single
most complicated clastic sedimentation system and that there are [sic] a bewildering array of potential
sediment transport paths within any glacier system”. Alley et al. [1997, p. 1030] argued that “the complexity
of glacial systems almost entirely precludes succinct rules describing erosion and sedimentation.” Sediment
transport in glaciers is complicated because there are so many different transport paths within the glacier
system (supraglacial, englacial, basal, subglacial, and fluvioglacial), so many débris sources, so many mechan-
isms of débris transport, such a huge range of particle sizes, and so many processes by which débris can be
entrained and released, few of which relate to the fluid-flow properties of the ice. In many of these areas there
is still no agreement even about the fundamental operation of processes. For example, the significance of
subglacial glaciohydraulic supercooling as a mechanism for entraining substantial amounts of sediment is
still being evaluated, and the details of the environmental factors that control the mechanism are still being
explored [Alley et al., 1998; Cook et al., 2009; Creyts et al., 2013]. Therefore, it would not yet be straightforward
to incorporate this process, which may be extremely important, into any working model of entrainment
potential, let alone one of transport capacity. We do not yet have all the parts to put together into a compre-
hensive model of glacier sediment transport. Arguably, transport capacity is not prominent in glacial geomor-
phology because the science is not yet sufficiently advanced to address the problem.

The questions that arise in glaciology and glacial geomorphology surrounding débris transport do not center
around the capacity of the system. There are many other issues being considered, and sediment plays an

Figure 11. Schematic diagram of possible subglacial conditions, showing a plan view of the bed of an active ice sheet or
glacier flowing from the top to the bottom of the page. The key sediment transport mechanisms are illustrated. The
thicknesses of the curves on the left represent the ice flux (linear scale), the water flux (logarithmic scale), and total flux of
débris in the ice plus deforming or stream-transported sediment below the ice (logarithmic scale) [after Alley et al., 1997].
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important role in glacier dynamics, but transport capacity is not often close to the forefront of thinking within
the discipline. Nevertheless, glacial studies have considered factors similar to those considered by geomor-
phologists looking at fluvial and aeolian transport capacity. Ice velocity, basal shear stress, effective normal
pressure, and the susceptibility of basal material to the tractive force applied by the movement of the
overlying material are central to many aspects of glacier sediment dynamics and have been treated in detail
by glaciologists and glacial sedimentologists. In particular, studies of how subglacial sediments may be
mobilized by stress imparted from the ice above come closest to linking ice flow with sediment transport
in a way similar to fluvial or aeolian studies.

8. Discussion

Transport capacity as a concept originally developed in fluvial systems and has received the greatest and most
enduring attention in this process domain. Gilbert introduced the term in his study that aimed to address “the
common needs of physiographic geology and hydraulic engineering” [Gilbert, 1914, p. 9] and was directly influ-
enced by engineers from France andGermany. The need to underpin engineering decisions runs across a range
of aspects of the development of the concept in fluvial, aeolian, coastal, and hillslope geomorphology and is
reflected by common practice in all of these areas (Table 1), even if uncertainty in results (see Figure 1) more
often than not leads to calibration and uncertainty of how the concept does actually justify any of the results
obtained. The idea that there should be a single value of sediment transport that corresponds to a particular
discharge also underpins the regime theory developed by engineers to design stable channels over a similar
time period to the original work on transport capacity [e.g., Kennedy, 1895; Lacey, 1930]. However, it is intriguing
to note that there seems not to have been a direct link between these literatures, at least until much later when
the work on regime theory started to inform broader concerns of river management and restoration [White
et al., 1982; Hey and Thorne, 1986]. This parallel development is also reflected in the apparent parallel inventions
in the different subfields of geomorphology, although authors were often quick to point out the linkages (e.g.,
Einstein [1941] and his discussants [Einstein, 1942] recognized the link between the work on fluvial bedload and
the work of Bagnold [1936] in the aeolian realm, even if the recognition was not mutual until much later).
Although many of these developments have been related to positivist and deterministic approaches relating
to prediction, there is also an ongoing recognition that there is a need to engage with aspects of variability.
For example, Einstein [1941, p. 561] noted the need to base these predictions on the “new theories of turbu-
lence” of Shields [1936] and Rouse [1939]. However, this need to address ongoing developments in the field
of turbulence has not always been heeded (see discussion below). It also fails to recognize the conceptual lim-
itations that may mean that there is no single concept of transport capacity that is applicable across all areas of
the discipline, nor indeed to individual process domains under all conditions. Consequently, there are issues
both in terms of whether any predictions based on the concept have a real, mechanistic understanding and
also in terms of how concepts of sediment transport are communicated between different parts of the disci-
pline or to those working in related areas in interdisciplinary projects.

Although the development of these different process domains can be considered as developments within
geomorphology, they were principally carried out by engineers (Einstein was a hydraulic engineer; Meyer
and Wischmeier were agronomic engineers; Caldwell worked for the Beach Erosion Board (now morphed
into the Coastal Engineering Research Centre run by the U.S. Army Corps of Engineers); Gilbert, although
having a geological background, saw his research as having engineering applications; and Bagnold was
something of an anomaly, working at the time as an independent researcher [Bagnold, 1990], although his
results were quickly put to practical application). The shift to the implementation of these engineering-based
approaches in geomorphology came with the development of quantitative geomorphology in the 1950s
and broader notions of the need for quantification and prediction. One of the main proponents of this
development, Strahler, was clearly aware of Gilbert’s definition of transport capacity and the work on which
it was based “Had Gilbert’s philosophy of physical geology prevailed among students of landforms the
analysis of slopes would not have been so long delayed.… An inevitable result… has been a gradual reduc-
tion in the physical science background of geomorphology students and teachers; and a consequent general
sterility in original geomorphic research. But while academic geomorphology has been approaching
stagnation important developments in the understanding of slope erosion processes have been made by
hydrologists, hydraulic engineers, and soil erosion specialists concentrating upon soil conservation and sedi-
mentation engineering” [Strahler, 1950, p. 210].
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Once the idea made it into the discipline, further developments of the concept within the fluvial and (to a
lesser extent) aeolian contexts went on to inform approaches within the coastal domain, soil erosion, and
in débris flows and glaciers to a muchmore limited extent. As the transfer from one area to another occurred,
there seems to have been restricted questioning of the core concept, and in many settings (especially in
fluvial and slope studies) it seems to have become “black boxed” [Latour, 1987] and immune from critical
evaluation. For example,Wainwright et al. [2008] discuss how the soil-erosion literature has avoided a critical
evaluation of not only transport capacity but also other issues such as the mode of sediment transport
on hillslopes.

That there seem to have been multiple, independent inventions of the concept is not unusual (e.g., as with
evolution, calculus, and the periodic table). Indeed, there is a close parallel in multiple inventions of
the notion of carrying capacity by game and range managers, population biologists, ecologists, and

Table 1. A List of Commonly Used Models That Employ Sediment-Transport Capacity Relations Across Different Process Domains

Model Transport-Capacity Equations Reference

HEC-RAS (Hydrologic Engineering
Center’s River Analysis System)

Fluvial erosion: Brunner [2010]
Ackers and White [1973]

Engelund and Hansen [1967]
Laursen [1958]

Meyer-Peter and Müller [1948]
Toffaleti [1968]

Yang [1973, 1984]
Wilcock [2001]

ISIS: river and floodplain modeling Fluvial transport: CH2MHILL [2015]
Ackers and White [1973]

DELFT3D: 3-D modeling suite to investigate hydrodynamics,
sediment transport and morphology, and water quality for
fluvial, estuarine, and coastal environments

Wave erosion: Deltares [2014]
Bijker [1967, 1971]
Soulsby [1997]
van Rijn [1993]
Current erosion:

Ashida and Michiue [1972]
Engelund and Hansen [1967]
Meyer-Peter and Müller [1948]
Wilcock and Crowe [2003]

MIKE21: simulation of physical, chemical, and biological
processes in coastal and marine environments

Current erosion: DHI [2013]
van Rijn [1993]

Engelund and Fredsøe [1976]
Engelund and Hansen [1967]
Meyer-Peter and Müller [1948]

WEPP (Water Erosion Prediction Project) Hillslope erosion: USDA [1995]
Foster [1982] based on Yalin [1963]

TOPMODEL (Topography based hydrological MODEL) Hillslope erosion: Kirkby [1997]
Kirkby [1993]

EUROSEM (European Soil Erosion Model) Splash erosion: Morgan et al. [1998]
Poesen [1985]
Govers [1991]
Everaert [1992]

Poesen and Torri [1988]
Rill erosion:
Govers [1990]
Interrill erosion:
Everaert [1991]
Fluvial erosion:
Govers [1990]

KINEROS (Kinematic Runoff and Erosion Model) Hillslope and channel erosion: Woolhiser et al. [1990]
Ackers and White [1973]

Engelund and Hansen [1967]
Kilinc and Richardson [1973]
Meyer and Wischmeier [1969]

Yalin [1963]
Yang [1973]
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demographers [Sayre, 2008]. All have their origins in the broader concept of engineering capacity (and what
came to be known as payload of ships) and relate to idealized, static conditions. Sayre [2008] pointed out that
all developed to relate to the control of environmental systems but have all become difficult to sustain when
issues of scale, variability, and system dynamics were addressed. These aspects will be considered further in
relation to transport capacity below, not least because of the parallel in the idea of control based on the
engineering underpinnings of the term.

In fluvial geomorphology, transport capacity is still very central despite the critiques discussed here in rela-
tion to turbulent processes. The importance of the concept has largely remained because of two reasons.
First, it is has proven useful in river restoration, channelization, and management for estimating the channel
geometry required to transport sediment in design flows [e.g., White et al., 1982]. If the capacity estimate
gives an overestimate of the maximum transport rate, although the engineering of structures in the channel
will be more expensive, the structures would be secure beyond the design criterion. Secondly, the transport
equations that have evolved due to the concept utilize river flow and channel variables that are commonly
monitored. However, what is easily measured is not necessarily what is required in terms of the parameters
that actually control sediment transport resulting in what are effectively empirical equations not rooted in
physical understanding. The usefulness of the approach is thus more about being able to justify practical
applications with recourse to an extended heritage of literature, rather than with a clear demonstration of
understanding of the process, as would be required by a realist approach.

In the case of aeolian geomorphology, the decline of the concept of transport capacity may, in part, be
related to the typical condition in the field of supply limitation. It was recognized early on in field work that
the sediment transport in locations where the source material was not just composed of sand was not “at
capacity” or “saturated” because so often very little sediment was observed to be moving [Gillette et al.,
1980, 1997; Gillette and Chen, 2001]. As information about turbulence filtered into the area from fluvial
research [e.g., Bennett and Best, 1995, 1996; Jackson, 1976], aspects of turbulence controls on observed trans-
port meant that spatial and temporal variability suggested that there was not a single capacity value that had
a meaning [e.g., Baas and Sherman, 2005].

In coastal studies the concept of transport capacity has been implicitly subsumed into the notion of long-
shore transport rate, which is still an important element in understanding beach development. It is applied
more at an annual to decadal timescale whereby the general field state of a beach system might be gauged
in terms of sediment input and transport potential out. However, the research emphasis has now switched to
the self-regulation of beach form by tuning incoming incident waves and secondary currents post–wave
breaking to short-term movement of sediment into distinctive beach morphologies where both cross-beach
and longshore beach transport may be codominant or negligible. This emphasis gave rise to morphody-
namics [Short, 1999b] as the principal mode of beach analysis over the last two to three decades.
Transport equations are still considered, but analysis is now more dependent on the detailed spectral break-
down of processes correlated with detailed empirical sediment transport from acoustic sampling (sand
grades). This means that detail of sediment transport as a result of power potential is often sidestepped.
Green and Coco [2014] have argued that in the coastal process domain (as well as argued above in the aeo-
lian), the reason is commonly to do with supply limitation.

In hillslope studies, the concept is only just being reevaluated.Wainwright et al. [2008] pointed out the limita-
tions of extrapolation of techniques from the fluvial literature to hillslopes that were untested because of the
difficulties of measuring the rapidly changing conditions in very shallow flows and because a number of the
fundamental assumptions are not met in those flows. There has been some debate about these arguments
[e.g., Smith et al., 2010;Wainwright et al., 2010], but the community seems largely happier to calibrate existing
models than to address the fundamental basis of why that calibration is necessary (as indeed is the case in
fluvial examples [e.g., Xia et al., 2013]). The use of the concept is also starting to fall out of favor with coastal
geomorphologists because of the amount of calibration required to produce predictions at any location. As
noted above, apart from some fluvially inspired dabbling, neither glacial nor debris flow geomorphologists
have been much influenced by the concept, not least because of issues of complexity and variability.

The foregoing review demonstrates that much of the literature rests on the assumption that a specific,
unchanging capacity to transport sediment exists. To what extent is such an assumption reasonable?
Where the concept has been developed (and redeveloped) across the different areas of geomorphology,
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there has been a convergence to the idea that the power of the transportingmedium uniquely allows the pre-
diction of the amount of sediment that will bemoved. Presumably, the idea of a single power termwas devel-
oped to avoid complications from other sources of flow variability, but as has been seen, this simplification
has proved problematic. If that conceptualization held, then it would provide a powerful tool in the manage-
ment of environmental systems or in the prediction of landscape evolution. Notwithstanding the lack of
consensus on how that power should be estimated, there are a number of conceptual issues that call into
question whether such a simple definition exists, and therefore if there are multiple definitions, whether
the core concept remains testable as opposed to the evaluation of ancillary hypotheses that simply protect
that core from critique. These conceptual issues are as follows: (i) whether or not the power of a flow can be
characterized independently of the sediment transported by that flow and whether the power represents
adequately the ways in which turbulent structures in different process domains control sediment transport,
(ii) the complicated nature of transport systems in any geomorphic domain, and (iii) whether or not there is a
scale independence of measured rates of transport.

Perhaps most importantly, the nature of flow is not independent of the sediment transported by that flow. As
the flow starts to take on more of a two-phase nature (or even three phase when air is rapidly trapped in
water-sediment mixes, for example, in flood waves in ephemeral channels, on beaches or in débris flows,
or four-phase flows when ice is included in glacial systems), the density and viscosity change so that the
underlying assumptions of the equations used to make predictions diverge from the conditions in the field.
In the fluvial and hillslope domains, these changes ultimately lead to the production of hyperconcentrated
and then ultimately débris flows, which demonstrate non-Newtonian behavior. Although this point is also
recognized by Hessel and Jetten [2007], they overlook the practical implication that it means that it is concep-
tually impossible to parameterize a model based on a single capacity value. In aeolian-dominated systems, it
has long been recognized that the initial movement of sediment by the air on its own requires higher rates of
wind shear than initial movement when the air contains sand grains that impact the surface during rebound
in saltation (called the fluid and impact thresholds, respectively) [Bagnold, 1941, pp. 92–95]. The Owen effect
also describes how the saltating sediment affects the effective roughness length of the surface, thus chan-
ging the transport behavior of the system [Owen, 1964]. It is usually argued that this process is insignificant
in the fluvial domain because of the lower difference between the density of the sediment and the fluid
[Bagnold, 1973, p. 484] and is of course irrelevant by the time the flow has become non-Newtonian. Long
et al. [2014] have shown that in rainsplash there can be an important effect of ballistic impact mobilizing
grains as initially splashed particles impact on the surface. Only as techniques develop to look at the
dynamics of multiphase flow in more detail will it be possible to evaluate to what extent these secondary
effects of particle-initiated entrainment are more than noise.

A further issue is the complicatedness of transporting systems. As already noted, this complicatedness means
that the concept of transport capacity has provided limited explanatory power in glacial geomorphology or
indeed on hillslopes. The variability in processes in other domains may also be an ultimate reason for the lim-
itation. For example, on hillslopes, the variation between raindrop detachment and splash, flow detachment
and flow transport introduces a wide range of spatial heterogeneity in observed transport [Parsons et al.,
2004, 2006] so that spatial heterogeneity of surface and subsurface properties will introduce significant varia-
bility in transport. Even if it were possible to make a single prediction of capacity, it might be so difficult to
account for the underlying stochastic nature of surface properties to render the practical application useless
(e.g., because the range of potential values is extremely broad, as suggested by the envelope curves in
Figure 4) or as discussed above that it would produce a significant overestimate leading to increased
engineering costs. Furthermore, the nature of transport also varies from creeping to rolling to saltation to
suspension, which will affect both the ability of the flow to transfer energy to particles and the effect of
particle-particle collisions in affecting the energy of the flow. The thresholds between these different forms
of transport are not necessarily clear [Parsons et al., 2015], further calling into question the predictability of
the system. Relations derived in one domain of transport cease to hold in others in part because of the varia-
bility in mechanisms and the difficulty of evaluating which mechanisms are in operation at which points in
time and space. In coastal studies, the complexity occurs as a result of multidirectional flows whether offshore
under oscillating waves or onshore where swash and backwash are at odds with each other. Consequently,
transport power is often used as an explanatory variable in beach transport (i.e., relating to the potential
power of a breaking wave), but the transformation postbreaking on the beach face becomes a more complex
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issue that means for most geomorphologists, it is easier to talk about macroscale or bulk changes rather than
the reductionist statements about instantaneous power. Indeed, it is often stated that it is the hiatuses in flow
that cause the main interpretation problem for modeling long-term coastal response. Again, it is not neces-
sarily the most straightforwardly measured variables that are the most significant in explaining patterns of
sediment transport.

If based on the assumption that there is a specific, unchanging capacity to transport sediment, there is a
further fundamental problemwith the concept of transport capacity, in that in order for it to hold, a flowmust
exhibit the same transport capacity at different temporal and spatial scales. In other words, transport capacity
must be independent of the scale of measurement, or there needs to be an explicit representation of spatial
and temporal variability in the prediction, above and beyond the flow power terms. Evidence from studies of
sediment transport on hillslopes, within rivers, by wind and along coasts suggests otherwise. This evidence
can broadly be considered in terms of the temporal and the spatial variability of transport.

Sediment transport is a stochastic process, whereas the transport capacity concept is essentially determinis-
tic. Especially for low concentrations, sediment transport is a granular phenomenon [Cooper et al., 2012] so
understanding it has to be at the grain scale [see also Furbish et al., 2012]. Because of stochasticity, transport
capacity varies with temporal scale and can only reflect certain time-averaged (steady state) conditions. The
evidence for the dependency of transport rate on temporal scale is as follows.

First, fluctuations in sediment transport under quasi-steady flow conditions occur commonly in rivers, hill-
slopes, and aeolian transport. These sediment pulses occur over a range of temporal scales: (i) turbulence
timescales due to the advection and propagation of turbulent-flow structures (e.g., Drake et al. [1988] and
Radice et al. [2013] for rivers and Baas and Sherman [2005] and Durán et al. [2011] for aeolian transport);
(ii) timescales of tens to hundreds of seconds due to wind gusting [Baas, 2004; Butterfield, 1998], variability
in wave power, migration of bed forms (e.g., Cudden and Hoey [2003], Iseya and Ikeda [1987], and Whiting
et al. [1988] for rivers, Andreotti et al. [2002a, 2002b, 2010] and Sauermann et al. [2001] for aeolian transport,
and Kosov et al. [1978] (cited in Sidorchuk [1999]) for hillslopes), or changes in the size and structure of river
bed material [e.g., Gomez, 1983; Pender et al., 2001]; and (iii) at hourly scales in rivers due to processes that
scale with the width of the channel, such as bar migration [Gomez et al., 1989], bank erosion [Cudden and
Hoey, 2003], scour-fill sequences, and changes in sediment supply [e.g., Gilbert, 1917; Knighton, 1989].
Similarly, coastal sediment transport is now seen as being dominated by the concepts of secondary genera-
tion of periodic longshore and onshore currents generated by variable amplification of the shoaling incident
wave spectrum [Huntley et al., 1977; Short, 1999b; Aagaard et al., 2013]. Infragravity wave energy—i.e., those
of a lower frequency than gravity waves—as well as incident wave energy is variably experienced on a beach
face, depending on beach face reflective-dissipative status (often now indexed by the surf-similarity para-
meter [Battjes, 1974], which is a function of the overall incident wave steepness (wave height over wave-
length) relative to overall shoaling shoreface slope [Huntley et al., 1977; Wright et al., 1979; Hughes et al.,
2014]). Consequently, transport equations of the form proposed by Caldwell are only ever broad time aver-
aged at best, as well as being poor indicators of overall transport variability.

Secondly, these fluctuations in sediment transport imply that estimates of transport capacity are dependent
upon sampling duration. For example, if particle movement is observed over a longer time frame, one would
expect a higher likelihood of measuring large transport distances because more particles are transported. A
particle that has traveled further may well be deposited in a more stable position than those that have
traveled a shorter distance. For example, in rivers, Ferguson et al. [2002] have demonstrated an apparent
deceleration of tagged movement of fluvial gravel through a succession of floods, which may relate to the
structure of bed material. Wainwright and Thornes [1991] and Parsons et al. [1993, 2010] make similar obser-
vations for particles moving on hillslopes following multiple storm events, as do Kirkby and Statham [1975]
and Statham [1976] for rockfalls. Given that sediment flux is a product of the entrainment rate and transport
distance, it follows that the sampling duration affects estimates of sediment flux and thus estimates of the
transport capacity of the flow [Bunte and Abt, 2005; Furbish et al., 2012]. In addition, sediment pulses that
occur as the movement of individual grains exposes others to the flow [e.g., Cudden and Hoey, 2003; Drake
et al., 1988] are more likely to occur over longer sampling durations.

Thirdly, estimates of transport rate are dependent upon the frequency at which transport is sampled. If one
were to observe the movement of transported particles at a temporal frequency that was comparable to the
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frequency of turbulent-flow structures, single-entrainment events would be observed. Thus, entrainment rate
and transport distance, and therefore their product, which gives sediment flux [Parsons et al., 2004], would be
estimated directly. If particle motion were sampled infrequently (e.g., before and after a single flow, storm, or
wind event), it would not be possible to determine whether the measured movement is due to single or mul-
tiple transport events. Thus, the entrainment rate could not be measured, and the sediment flux would be
estimated indirectly by the virtual velocity (ratio of distance traveled to sampling duration), as, for example,
in equation (1). Thus, the two estimates would likely give different values for the transport capacity of
the flow.

Fourthly, sediment transport is often assumed to adapt to local conditions instantaneously, and accordingly,
sediment-transport rate is modeled as a capacity value based on some local flow condition. The fluvial
literature has clearly demonstrated phase differences between flow and sediment-transport rate for both
suspended and bedload transport [e.g., Alexandrov et al., 2003; Kuhnle, 1992; Laronne and Reid, 1993;
Lee et al., 2004; Marcus, 1989; Reid et al., 1985; Sutter et al., 2001; Williams, 1989]. The deviation between
bedload-transport rate and capacity increases with time lag, and the time lag is longer for higher transport
rates [Cao et al., 2010]. As highlighted earlier, a similar situation also exists with wind-blown transport
[Butterfield, 1991; Hardisty, 1993; Spies et al., 2000], in which the time lag is greater with an increase in wind
speed than a decrease. Thus, suspended and bedload transport in fluvial and aeolian environments cannot
adapt to local flow conditions faster than changes in flow due to turbulence [Cao et al., 2007, 2010; Stout
and Zobeck, 1997], and hence, the transport-capacity concept cannot provide a mechanistic understanding
of sediment transport at turbulence timescales, nor at scales smaller than the time lag.

Fifthly, transport rates change with the duration of the flow event. As a surface erodes, a grain is likely to
come to rest in a more sheltered position than its original location so a higher shear stress will be required
to remobilize the grain, increasing its subsequent resting duration and travel distance, and virtual velocity.
In rivers, transport rates fall to negligible levels, even during steady flows, due to bed armoring [e.g.,
Pender et al., 2001]. Hairsine and Rose [1992a, 1992b] suggest that the probability of detachment on
hillslopes is dependent upon whether the particle resides in the deposited layer or in the unshielded ori-
ginal soil layer. Furthermore, in rivers, flow history also influences transport rate. Both subthreshold flows
[e.g., Paphitis and Collins, 2005] and above-threshold flows [Hassan et al., 2006; Mao, 2012; Reid et al., 1985]
have been shown to increase detachment thresholds for sands and gravels over a succession of
flow events.

In terms of spatial dependency, transport rates are dependent upon the spatial distribution of fluid shear
stress and critical shear stress. Thus, transport capacity is dependent spatially. This dependency can be
demonstrated in the following ways.

First, spatial variations in transport rates occur at a range of scales; from the grain scale due to differences
in the surface microtopography, such as packing and grain exposure [e.g., Darboux and Huang, 2005;
Drake et al., 1988; Jackson et al., 2006; Radice et al., 2009; Wainwright and Thornes, 1991], at the bed form
scale [e.g., Baas and Sherman, 2005; Brayshaw, 1984; Church et al., 1998; Farres, 1987; Gares et al., 1996;
Laronne and Carson, 1976; Richards and Clifford, 1991; Torri, 1987], and at the plot [e.g., Vandaele and
Poesen, 1995; Favis-Mortlock et al., 2000] or reach scale [e.g., Hooke, 1975; Dietrich and Smith, 1984] due
to changes in morphology [Bauer et al., 1996; Gillies et al., 2006; Gillies and Lancaster, 2013]. Thus, estimates
of transport capacity vary according to the spatial scale over which the measurements of transport rate are
made. This dependency on sampling area can also be nicely illustrated with the following evidence.
Measurements of travel distances of individual particles during runoff events on hillslopes and of tagged
gravel in rivers show that transport distances are small and have a heavy-tailed distribution [Hassan et al.,
1991; Wainwright and Thornes, 1991; Parsons et al., 1993; Hill et al., 2010; Lajeunesse et al., 2010]. Thus, only
the smallest eroded particles, or a fraction of larger ones, are likely to be transported to large distances,
after even a very large runoff or flow event. Hence, estimates of sediment flux, and therefore transport
capacity, will vary with sampling area. The spatial dependency between roughness scale and aeolian trans-
port can also result in a given wind condition not producing the same transport rate at different spatial
scales. For equivalent roughness (as defined by roughness density), the size of the roughness elements
dramatically affects the transport. For the same shear velocity one can get quite different flux rates as
the saltating particles interact with the roughness [Gillies et al., 2006; Gillies and Lancaster, 2013].
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Thus, although the shear velocity may be the same, the flux may be very different due to the size of the
roughness, suggesting that in cases where sediment supply is not limiting, there would either have to be
two capacity states for the same shear velocity or that the concept of capacity is not a mechanistic descrip-
tion of the process.

Secondly, transport-capacity equations are not scalable from one river to another, nor from one hillslope to
another. Transport capacity is scaled by, among other things, bed shear velocity (or bed shear stress) and
grain size. Two flows can have the same bed shear stress but occur over rills or channels with differing
slopes and therefore have differing relative submergence (flow depth: bed roughness size). To illustrate
this difference, consider the following example. Take two river channels with a slope of 0.005 (�) and
0.02 (�), identical bed shear velocity of 0.1m s�1, and composed of the same material (D50 = 0.02m).

Given that u� ¼
ffiffiffiffiffiffiffiffiffiffi
ghwS

p
, the flow depths hw for the two river channels are 0.20m and 0.05m, respectively,

so the relative submergence is 10.2 and 2.5. This difference in submergence may be important when extra-
polating the transport-capacity relationships from one river to another, or one from hillslope to another, for
the following reason. Within the fluvial literature there is strong evidence that the mean fluid shear stress at
which sediment is entrained is inversely correlated to relative submergence [e.g., Bathurst et al., 1983, 1987;
Bettess, 1984; Shvidchenko and Pender, 2000; Mueller et al., 2005; Parker et al., 2011] because the structure of
the near-bed flow changes with submergence [Ashida and Bayazit, 1973; Graf, 1991; Lamb et al., 2008;
Cooper, 2012]. Wainwright and Thornes [1991] found a similar pattern for coarse particles on hillslopes.
One further problem in trying to use the concept for different slopes is the concept that only applies strictly
to steady and uniform flows. Therefore, the degree to which the flow can transport its capacity depends on
the steadiness and uniformity of the flow. As slope increases, the flow is more likely to be nonuniform and
locally unsteady. Thus, these differences in flow submergence, uniformity, and steadiness on hillslopes orwithin
channels with differing slopes mean that flows with the same mean bed shear stress will not have the same
putative transport capacity.

Thirdly, transport capacity equations do not scale across different process domains. If the concept is physi-
cally robust, this scaling problem should not arise. For example, the extrapolation of transport-capacity equa-
tions from the fluvial literature to processes occurring on a hillslope, though commonplace, poses potential
problems. The relative flow submergence under which transport occurs is usually higher for a river so the
transport relationships developed for rivers may not scale to overland flow conditions. For a given bed shear
velocity and grain size, the slope of a hillslope is likely to be greater than in a river, and the flow depth and
relative submergence will therefore be lower. To illustrate this issue, consider the following example. Take
a hillslope with a typical slope of 0.2 (�) and a river with a slope of 0.005 (�), an identical bed shear velocity
of 0.1m s�1, and composed of the same material (D50 = 0.0005m). The flow depths hw for the hillslope and
river are 0.005m and 0.2m, respectively, so the relative submergence is 20 and 815. Therefore, the difference
in relative submergence between river and overland flows is likely to result in transport rates on hillslopes
being underestimated by fluvial transport-capacity equations. Furthermore, the use of bed shear velocity
as the scaling parameter from the river and to the hillslope relies on the assumption of steady and uniform
flow. These conditions are unlikely to occur on the higher gradients commonly found on hillslopes. A similar
or somewhat analogous situation happens in aeolian transport as affected by roughness scale. Based on
results presented in Brown et al. [2008] and Raupach et al. [2006], for equivalent roughness densities (λ= total
roughness element frontal area/area occupied by the elements), the same shear stress will be exerted on the
surface among the roughness elements, regardless of their size and distribution. The saltation flux for similar
roughness densities, however, can be quite different, which Gillies et al. [2006] and Gillies and Lancaster [2013]
attribute to the interaction of the particles in transport with the roughness elements. Large elements reduce
the flux beyond that which can be solely attributed to the effect caused by the partitioning of shear stress
between the roughness elements and the surface. This observation suggests that there can be multiple
apparent capacity states for the same surface shear stress in aeolian sediment transport, due to roughness
effects related to their physical size.

If the issues highlighted in this discussion mean that it is difficult to retain a concept of transport capacity,
what are the implications for understanding and predicting sediment transport? The experience from espe-
cially the fluvial, aeolian, and coastal process domains suggests that a concept of capacity is not a prerequisite
for predicting transport rate. If we focus on the grain scale, then employing the terminology of Furbish et al.
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[2012], the flux represented by an ensemble of sediment particles at a particular point in space and time can
be defined as

qx x; tð Þ ¼ u γ � 1
2

∂
∂x

κ γð Þ (39)

where qx is the mean unit flux relative to the direction of flow (L2 T�1);
ū is the mean particle velocity (L T�1);
γ is the mean “particle activity” or volume of particles in the fluid per unit area of the bed (L);
x is distance in the direction of the flow (L);
κ is the mean diffusivity of particle movement (L2 T�1).

Each of these terms has an implicit scale of variability, and only at low transport rates can they be considered
correlated [Furbish et al., 2012]. Particle velocity is controlled by the position of the particle in the vertical
profile, which is a function of initial conditions of entrainment and its trajectory, both related to turbulence
and to sediment particle size, spin (Magnus force), and interactions with other particles. The particle activity
is a function of relative entrainment and deposition rates and thus depends on local conditions in relation to
the former but conditions upflow for the latter [see Parsons et al., 2004]. Diffusivity is related to the autocor-
relation of variability in the particle velocity [Furbish et al., 2012] and thus again on turbulence structures over
distances upflow corresponding to different lengths as a function of different particle sizes. Figure 12
illustrates how these different scales might vary through a vertical flow profile. Transport capacity would only
hold if, averaged over a suitable timescale (e.g., over timescales of turbulent variations or of bed form transla-
tion [Furbish et al., 2012], the sediment flow into the control volumes at different points in the fluid flow
balanced the sediment flow out. However, because turbulence in environmental flows is anisotropic, i.e.,
the flow structures have a downstream directional preference and thus the mean flow velocity has a gradient
(see Grant and Marusic [2011] for a useful review), changes in particle activity, velocity, and diffusivity will
relate to different space and timescales in the flow field and thus supply into—and the delivery out of—
the control volume cannot be steady and thus transport capacity cannot be a meaningful description of
the process. Transport capacity could only hold in conditions of homogeneous turbulence (i.e., turbulence
has the same structure quantitatively in all parts of the volume, so the velocity fluctuations are random
and the mean fluctuation is zero) or isotropic turbulence (the statistical features have no directional
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Figure 12. Relationships as a function of flow depth (z) between mean flow velocity (v), mean sediment velocity (u), mean
particle activity (γ —see equation (39)), and mean sediment flux (q) for (a) flow dominated by coarse particles moving near
the substrate, (b) flow dominated by fine particles moving throughout the flow column, and (c) hyperconcentrated or débris
flows where the velocities of the fluid and the sediment converge. In moving from Figure 12a to Figure 12c, the upstream
effects of flow variability cause both u(z) and γ(z) to become more variable because of anisotropy in the turbulent flow.
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preference, and thus, there is no mean flow velocity gradient, and the mean velocity is either zero or constant
throughout the volume). As particle activity increases, the probability of particle-particle collisions will
increase [e.g., Bagnold, 1954; Sommerfeld, 2001], the nature of the fluid will change, and thus too will the
correlation lengths over which the terms in equation (39) need to be averaged.

The grain-based perspective suggests, then, that what is observed is a time-averaged sediment flux. In this
setting, models that relate entrainment to underemployment of capacity or deposition to an exceedance
of capacity (e.g., equations (28), (29), (31), (32), and (35)) are physically unreasonable, because they confound
the instantaneous processes of transport with a phenomenological representation of time-averaged condi-
tions. Such a perspective also requires a more nuanced approach to the idea of supply limitation. At the very
least, there needs to be a recognition of the temporal and spatial variability of sediment supply, which also
relates to conditions upflow, in the same way as the variability in transport does. Improved models of sedi-
ment transport thus need to focus on direct or indirect characterizations of the terms in equation (39) to allow
predictions—whether averaged or including stochastic fluctuations—to be more reliable and transferable
because of their process basis. The general nature of equation (39) means that it is a valid basis for developing
general, universal models for predicting sediment-transport rates and thus overcome some of the limitations
highlighted in this review as a result of working in specific process domains.

This perspective also has implications for what is measured and how those measurements are carried out. At a
specific scale, different measurements will reflect different characteristics and states of the sediment-transport
process within different components of the geomorphic system. Figure 13 demonstrates how different techni-
ques have been used at different scales. More long-standing techniques tend to emphasize averaging over
longer time intervals, and we would argue have tended to support concepts relating to steady state, such as
transport capacity, rather than the inherent variability of sediment-transport processes. Newer technologies
are increasingly able to evaluate shorter temporal and spatial variability, and it will be will the application of
these techniques that the more robust and transferable models of sediment transport will be developed.

9. Conclusions

Transport capacity is a concept that is used across a wide range of domains within geomorphology. Although
initially defined in fluvial geomorphology, there were subsequently a number of independent inventions of
similar concepts that were subsequently reabsorbed into the discipline. This process happened at an

Figure 13. Spatial and temporal scales of measurement of sediment transport and their implicit or explicit uses. The area
shaded in the centre of the diagram has been the one typically used to infer transport capacity rates. Measurements at
other scales and for other purposes have come to challenge the underlying concept of transport capacity.
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accelerating pace from the 1950s following the drive to make the discipline more quantitative but was also
underpinned from perspectives needed to manage and control environmental systems. The above review
suggests that the multiple different ideas and applications of the term add potential for confusion and mean
that ways of testing ideas of capacity are unclear. Unless the use in different areas is clarified or common
terminology is defined [e.g., Bracken and Oughton, 2006], there is a risk that coherent testing of the idea will
be impossible. If the fact that the complicatedness of environmental systems and that estimates of capacity
do not transfer across scales means that the concept is fundamentally limited, there will be serious practical
consequences of using it to make predictions, especially as environmental management increasingly moves
toward integrated approaches at catchment or landscape scales (e.g., Integrated River Basin Management
and related policies such as the EU Water Framework Directive or aspects of the Clean Water Act in the
U.S.). If the existing models need significant calibration and are thus poor representations of the process,
the continued use of the model is more about a justification of truth given the need to expend effort to carry
out that calibration. For practical use, much simpler models could be calibrated if all that is required is an
empirically based prediction of a rate. As noted in the overview on carrying capacity in a range of disciplines
by Sayre [2008, p. 131] “If carrying capacity is conceived as static, it is theoretically elegant but empirically vac-
uous; but if it is conceived as variable, it is theoretically incoherent or at best question-begging.”

The recognition of the complicatedness of sediment-transport systems and the effects of spatial and tem-
poral dynamics in them—both as a result of turbulence and of environmental heterogeneity—should mean
that new approaches are needed that are not underpinned by an ideal transport capacity that is virtually
impossible to produce outside of controlled, laboratory conditions. Just because an effect is isolatable in
laboratory conditions does not imply that it is a useful way of approaching an understanding of the real world
[Hacking, 1983]. There is a need to take on board the complicatedness of the environment and of process. In
the latter case, there is a strong implication from the comparisons here that an approach that recognizes that
different types of flow form continua would be a useful way forward, recognizing that some of the institu-
tional distinctions made in the discipline hinder the development of geomorphological understanding over-
all. If so, the implication is strongly that we need to move away from the idea of transport capacity and
certainly that a single capacity for any set of condition is practically impossible. As the advances discussed
above suggest, the way forward requires fundamental characteristics of sediment transport to be reevaluated
using an integrated approach that combines both fundamental theory with empirical observations and that
the latter should be driven by the former.
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