176 research outputs found
Improved near real time surface wind resolution over the Mediterranean Sea
International audienceSeveral scientific programs, including the Mediterranean Forecasting System Toward Environmental Predictions (MFSTEP project), request high space and time resolutions of surface wind speed and direction. The purpose of this paper is to focus on surface wind improvements over the global Mediterranean Sea, based on the blending near real time remotely sensed wind observations and ECMWF wind analysis. Ocean surface wind observations are retrieved from QuikSCAT scatterometer and from SSM/I radiometers available at near real time at Météo-France. Using synchronous satellite data, the number of remotely sensed data available for each analysis epoch (00:00 h; 06:00 h; 12:00 h; 18:00 h) is not uniformly distributed as a function of space and time. On average two satellite wind observations are available for each analysis time period. The analysis is performed by optimum interpolation (OI) based on the kriging approach. The needed covariance matrixes are estimated from the satellite wind speed, zonal and meridional component observations. The quality of the 6-hourly resulting blended wind fields on 0.25° grid are investigated trough comparisons with the remotely sensed observations as well as with moored buoy wind averaged wind estimates. The blended wind data and remotely wind observations, occurring within 3 h and 0.25° from the analysis estimates, compare well over the global basin as well as over the sub-basins. The correlation coefficients exceed 0.95 while the rms difference values are less than 0.30 m/s. Using measurements from moored buoys, the high-resolution wind fields are found to have similar accuracy as satellite wind retrievals. Blended wind estimates exhibit better comparisons with buoy moored in open sea than near shore
Semi-empirical dissipation source functions for ocean waves: Part I, definition, calibration and validation
New parameterizations for the spectra dissipation of wind-generated waves are
proposed. The rates of dissipation have no predetermined spectral shapes and
are functions of the wave spectrum and wind speed and direction, in a way
consistent with observation of wave breaking and swell dissipation properties.
Namely, the swell dissipation is nonlinear and proportional to the swell
steepness, and dissipation due to wave breaking is non-zero only when a
non-dimensional spectrum exceeds the threshold at which waves are observed to
start breaking. An additional source of short wave dissipation due to long wave
breaking is introduced to represent the dissipation of short waves due to
longer breaking waves. Several degrees of freedom are introduced in the wave
breaking and the wind-wave generation term of Janssen (J. Phys. Oceanogr.
1991). These parameterizations are combined and calibrated with the Discrete
Interaction Approximation of Hasselmann et al. (J. Phys. Oceangr. 1985) for the
nonlinear interactions. Parameters are adjusted to reproduce observed shapes of
directional wave spectra, and the variability of spectral moments with wind
speed and wave height. The wave energy balance is verified in a wide range of
conditions and scales, from gentle swells to major hurricanes, from the global
ocean to coastal settings. Wave height, peak and mean periods, and spectral
data are validated using in situ and remote sensing data. Some systematic
defects are still present, but the parameterizations yield the best overall
results to date. Perspectives for further improvement are also given.Comment: revised version for Journal of Physical Oceanograph
Numerical Modelling of Tidal Notch Sequences on Rocky Coasts of the Mediterranean Basin
Publisher's version/PDF must be used in Institutional Repository 6 months after publication
Orienting Cellulose Nanocrystal Functionalities Tunes the Wettability of Water-Cast Films
ABSTRACT: Cellulose nanocrystal (CNC)-based materials display apparently erratic wetting behaviors with contact angle (CA) variations as large as 30° from sample to sample. This work hypothesizes that it is the orientation of CNC amphiphilic functionalities at the interface with air that causes the variability in CA. By exploiting relationships with the Hansen solubility parameter theory, a set of surface tension parameters is proposed for both the polar and the non-polar surfaces of cellulose Iβ nanocrystals. These coefficients elucidate the wettability of CNC materials by establishing a correlation between the wetting properties of the air/sample interface and its chemical composition in terms of non-polar moieties. Advancing/receding CA experiments suggest that, while spin-coating CNC suspensions yield purely polar films, oven-casting them produces amphiphilic surfaces. We proposed a mechanism where the state of dispersion (individual or agglomerated) in which CNCs reach the air/water interface during casting is the determining factor: while individual nanocrystals find it more stable to orient their non-polar surfaces toward the interface, the aspect ratio of CNC agglomerates favors an orientation of their polar surfaces. This represents the first compelling evidence of CNC orientation at an interface and can be applied to Pickering emulsions and nanocomposites and to the production of CNC materials with tuned wettability
Observation and estimation of Lagrangian, Stokes and Eulerian currents induced by wind and waves at the sea surface
The surface current response to winds is analyzed in a two-year time series
of a 12 MHz (HF) Wellen Radar (WERA) off the West coast of France. The measured
currents, with tides filtered out, are of the order of 1.0 to 1.8% of the wind
speed, in a direction 10 to 40 degrees to the right of the wind. This
Lagrangian current can be decomposed as the vector sum of a quasi-Eulerian
current U_E, representative of the top 1 m of the water column, and a part of
the wave-induced Stokes drift Uss at the sea surface. Here Uss is estimated
with an accurate numerical wave model, thanks to a novel parameterization of
wave dissipation processes. Using both observed and modelled wave spectra, Uss
is found to be very well approximated by a simple function of the wind speed
and significant wave height, generally increasing quadratically with the wind
speed. Focusing on a site located 100 km from the mainland, the estimated
contribution of Uss to the radar measurement has a magnitude of 0.6 to 1.3% of
the wind speed, in the wind direction, a fraction that increases with wind
speed. The difference U_E of Lagrangian and Stokes contributions is found to be
of the order of 0.4 to 0.8% of the wind speed, and 45 to 70 degrees to the
right of the wind. This elatively weak quasi-Eulerian current with a large
deflection angle is interpreted as evidence of strong near-surface mixing,
likely related to breaking waves.Comment: Submitted to J. Phys. Oceanogr. le 16/10/2008. Revised 18/02/2009,
Accepted 03/04/201
Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients
Consistency of satellite climate data records for Earth system monitoring
Climate Data Records (CDRs) of Essential Climate Variables (ECVs) as defined by the Global Climate Observing System (GCOS) derived from satellite instruments help to characterize the main components of the Earth system, to identify the state and evolution of its processes, and to constrain the budgets of key cycles of water, carbon and energy. The Climate Change Initiative (CCI) of the European Space Agency (ESA) coordinates the derivation of CDRs for 21 GCOS ECVs. The combined use of multiple ECVs for Earth system science applications requires consistency between and across their respective CDRs. As a comprehensive definition for multi-ECV consistency is missing so far, this study proposes defining consistency on three levels: (1) consistency in format and metadata to facilitate their synergetic use (technical level); (2) consistency in assumptions and auxiliary datasets to minimize incompatibilities among datasets (retrieval level); and (3) consistency between combined or multiple CDRs within their estimated uncertainties or physical constraints (scientific level).
Analysing consistency between CDRs of multiple quantities is a challenging task and requires coordination between different observational communities, which is facilitated by the CCI program. The inter-dependencies of the satellite-based CDRs derived within the CCI program are analysed to identify where consistency considerations are most important. The study also summarizes measures taken in CCI to ensure consistency on the technical level, and develops a concept for assessing consistency on the retrieval and scientific levels in the light of underlying physical knowledge. Finally, this study presents the current status of consistency between the CCI CDRs and future efforts needed to further improve it
Improved near real time surface wind resolution over the Mediterranean Sea
International audienceSeveral scientific programs, including the Mediterranean Forecasting System Toward Environmental Predictions (MFSTEP project), request high space and time resolutions of surface wind speed and direction. The purpose of this paper is to focus on surface wind improvements over the global Mediterranean Sea, based on the blending near real time remotely sensed wind observations and ECMWF wind analysis. Ocean surface wind observations are retrieved from QuikSCAT scatterometer and from SSM/I radiometers available at near real time at Météo-France. Using synchronous satellite data, the number of remotely sensed data available for each analysis epoch (00:00 h; 06:00 h; 12:00 h; 18:00 h) is not uniformly distributed as a function of space and time. On average two satellite wind observations are available for each analysis time period. The analysis is performed by optimum interpolation (OI) based on the kriging approach. The needed covariance matrixes are estimated from the satellite wind speed, zonal and meridional component observations. The quality of the 6-hourly resulting blended wind fields on 0.25° grid are investigated trough comparisons with the remotely sensed observations as well as with moored buoy wind averaged wind estimates. The blended wind data and remotely wind observations, occurring within 3 h and 0.25° from the analysis estimates, compare well over the global basin as well as over the sub-basins. The correlation coefficients exceed 0.95 while the rms difference values are less than 0.30 m/s. Using measurements from moored buoys, the high-resolution wind fields are found to have similar accuracy as satellite wind retrievals. Blended wind estimates exhibit better comparisons with buoy moored in open sea than near shore
- …
