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Abstract 38 

Climate Data Records (CDRs) of Essential Climate Variables (ECVs) as defined by the 39 

Global Climate Observing System (GCOS) derived from satellite instruments help to 40 

characterize the main components of the Earth system, to identify the state and evolution of 41 

its processes, and to constrain the budgets of key cycles of water, carbon and energy. The 42 

Climate Change Initiative (CCI) of the European Space Agency (ESA) coordinates the 43 

derivation of CDRs for 21 GCOS ECVs. The combined use of multiple ECVs for Earth system 44 

science applications requires consistency between and across their respective CDRs. As a 45 

comprehensive definition for multi-ECV consistency is missing so far, this study proposes 46 

defining consistency on three levels: (1) consistency in format and metadata to facilitate 47 

their synergetic use (technical level); (2) consistency in assumptions and auxiliary datasets to 48 

minimize incompatibilities among datasets (retrieval level); and (3) consistency between 49 

combined or multiple CDRs within their estimated uncertainties or physical constraints 50 

(scientific level).   51 

Analysing consistency between CDRs of multiple quantities is a challenging task and requires 52 

coordination between different observational communities, which is facilitated by the CCI 53 

program. The inter-dependencies of the satellite-based CDRs derived within the CCI program 54 

are analysed to identify where consistency considerations are most important. The study 55 

also summarizes measures taken in CCI to ensure consistency on the technical level, and 56 

develops a concept for assessing consistency on the retrieval and scientific levels in the light 57 

of underlying physical knowledge. Finally, this study presents the current status of 58 

consistency between the CCI CDRs and future efforts needed to further improve it.  59 
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Capsule 60 

In this study, the ESA Climate Change Initiative (CCI) introduces a three-level 61 

definition of consistency between multiple satellite-based Climate Data Records (CDRs) of 62 

Essential Climate Variables (ECVs), discusses consistency status and requirements and 63 

develops a concept for assessing inter and across ECV consistency.  64 
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 5 

1. Introduction 65 

The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report 66 

(AR5) and the three Special Reports of the AR6 cycle state that mankind and the biosphere 67 

face great threats due to the rapidly changing climate (IPCC, 2013, 2018, 2019a, 2019b). To 68 

support political decisions on climate change mitigation and adaptation, and to quantify the 69 

implications for economic and non-economic loss and damage, the United Nations 70 

Framework Convention on Climate Change (UNFCCC) requires systematic monitoring of the 71 

global climate system (e.g. Doherty et al., 2009; UNFCCC Art. 4 and Art. 5, 1992; Paris 72 

Agreement 7.7c, Adaptation). In particular, systematic monitoring is important in assessing 73 

progress on the aims of the Paris Agreement (e.g. for the global stocktake). The main tools at 74 

hand to determine the extent and impacts of climate change on local to global scales and 75 

understand its causes are a combination of global and regional climate and Earth system 76 

models, reanalysis data, and systematic observations. The latter are indispensable for all 77 

Earth system domains (atmospheric, terrestrial, oceanic) to increase the understanding of 78 

and quantify processes, budgets and reservoirs within the global Earth cycles (carbon, 79 

energy, and water). 80 

To promote systematic climate monitoring, the World Meteorological Organization 81 

(WMO), Intergovernmental Oceanographic Commission (IOC), United Nations Environment 82 

Program (UNEP), and International Science Council (ISC), established in 1992 the Global 83 

Climate Observing System (GCOS). GCOS aims at sustained “provision of reliable physical, 84 

chemical and bio-chemical observations and data records for the total climate system – 85 

across the atmospheric, oceanic and terrestrial domains, including hydrological and carbon 86 

cycles and the cryosphere” (GCOS, 2016). GCOS defined a set of currently 54 “Essential 87 

Climate Variables” or ECVs (Bojinski et al., 2014) which must be observed in a sustained and 88 
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 6 

consistent manner to enable detection of climate trends and provide data suitable for 89 

climate model evaluation and climate change attribution.  90 

Complementary to relatively sparse airborne and ground-based measurements and 91 

inventory data, satellite observations are of ever-growing importance for evaluating, 92 

initializing and parameterizing Earth system processes represented in models. This growing 93 

importance is due to the increasing satellite global coverage and resolution (in space and 94 

time), their improved calibration accuracy and the increasing diversity of relevant 95 

observables provided by advances in satellite sensor technologies. Satellite observations can 96 

provide a significant contribution for 21 out of the 54 GCOS ECVs. Some of these are 97 

exclusively derived from satellite measurements (e.g. the Earth Radiation Budget), whereas 98 

for others dedicated spaceborne sensors provide better coverage but lower accuracy or 99 

resolution than in situ measurements (e.g. above-ground biomass, column atmospheric 100 

concentration of CO2 and CH4).  101 

Studies of the Earth system require combined analysis of datasets of many variables. 102 

Since these are derived from different sources (satellite-, ground-, air- and model-based) and 103 

processing systems, one underlying precondition of any such analysis is that the datasets are 104 

consistent. However, despite the importance of consistency, many open questions remain, 105 

ranging from a clear definition of consistency for multiple quantities, to systematically 106 

assessing consistency between the many data records used.  107 

Possible reasons for inconsistencies include the use of different auxiliary datasets, 108 

simplifications in corrections and retrieval algorithms, calibration uncertainties and 109 

differences in sampling and gridding. For example, a time series of a single variable built 110 

from data records obtained from different sensors may exhibit “jumps” where they are 111 

merged with each other, which may hinder any trend analysis. Another example is assigning 112 

different land cover classes (e.g. glacier, water, rock or vegetation) to the same pixel by using 113 
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 7 

different glacier masks, which may lead to highly variable budget calculations of related 114 

exchange processes.  115 

Consistency as an issue in creating satellite-based data records was first met by 116 

operational entities like NOAA, EUMETSAT or NASA within their near-real time (NRT) 117 

processing chains across different satellite missions. This includes aspects such as common 118 

input datasets, gridding methodology, cloud and land/sea masking, aerosol and water 119 

vapour corrections, and the land cover map used. The measures taken are typically 120 

documented in Algorithm Theoretical Baseline Documents (e.g. consistent OMI-MODIS cloud 121 

products: Siddans, 2016 or merged TROPOMI-VIIRS cloud product: NASA, 2014). However, 122 

the need for consistency across different variables, domains and processing systems is 123 

inherent in climate studies and thus much broader than in the often independent NRT 124 

applications. 125 

Over the past ten years, space agencies (including ESA, EUMETSAT, NASA, and NOAA) 126 

have emphasised the generation and delivery of satellite-based CDRs. Hollmann et al. (2013) 127 

describe the efforts of ESA through its Climate Change Initiative (CCI). CCI leverages and 128 

harvests the long-term satellite archives available from European and other satellites, and 129 

enhances or expands these records with observations from other space agencies to obtain 130 

global coverage. In addition, CCI is extending its newly established CDRs with the most 131 

recent satellite instruments to guarantee continuation into the future using operational 132 

missions (e.g. Sentinel). During its first six years (2011-2017), CCI implemented 14 projects, 133 

each targeting one (or two) ECVs; in 2018, CCI was expanded to include nine additional ECVs, 134 

as shown in Figure 1. It should be noted that most of the ECVs consist of several quantities, 135 

so-called products (detailed information on the products of each CCI ECV for which CDRs 136 

have been processed in CCI is available at http://cci.esa.int). Of course, products within a 137 

particular ECV have to be consistent. A particular element within the CCI program is 138 
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independent analysis of the quality of its CDRs and particularly their consistency (between 139 

different ECVs and products) in a climate modelling context by the CCI Climate Model User 140 

Group (CMUG) and several budget closure study projects. 141 

Together with the Copernicus Climate Change Service (C3S) and contributions from 142 

EUMETSAT through its Satellite Application Facilities (SAFs) such as the Climate Monitoring 143 

SAF (Schulz et al., 2009), the NOAA Climate Data Record program 144 

(https://www.ncdc.noaa.gov/cdr, Bates et al. 2016), and the NASA Measures program 145 

(https://earthdata.nasa.gov/measures), about 1000 different satellite-based CDRs for GCOS 146 

ECV products and further variables are available or will become available in the near future. 147 

An overview of these CDRs is given in the ECV inventory 148 

(https://climatemonitoring.info/ecvinventory), recently established by the joint CEOS-CGMS 149 

Working Group on Climate, which conducts regular gap analysis to define future satellite 150 

development needs.  151 

This study introduces a concept developed in CCI to define and assess consistency 152 

between multiple satellite-based ECV products. It is shown that such an assessment allows 153 

remaining inconsistencies to be identified and quantified in the light of given CDR 154 

uncertainties and relevant physical principles. A key application of assessing and ensuring 155 

consistency is in closure studies where multiple CDRs are used together. A selection of topics 156 

for such closure studies is briefly discussed in this paper to illustrate the concept.  157 

Section 2 discusses different kinds of inconsistencies and develops a definition of 158 

consistency, followed by a brief analysis of ECVs covered by CDRs from CCI and consistency 159 

needs in Earth system monitoring in Section 3. Section 4 develops a concept for assessing the 160 

different levels of consistency and illustrates it with examples from different ECV products in 161 

CCI. Section 5 presents a discussion of the main findings and identifies remaining consistency 162 

gaps.  163 
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2. Consistency in Earth system monitoring 164 

Whilst ”consistency” (e.g. between two datasets) is a concept frequently referred to 165 

in the observation community, there is, to our knowledge, no comprehensive definition 166 

specific to observation datasets of different variables. This may reflect the complexity of 167 

relations between the large set of ECVs. This study proposes such a comprehensive 168 

definition and an assessment concept for consistency. The focus is on consistency between 169 

datasets of different variables, as needed for climate studies, but also single-variable cases 170 

are included. 171 

According to the common definition of the word “consistency” (Oxford dictionary), it 172 

is “the quality of always behaving in the same way or of having the same opinions or 173 

standards; the quality of being consistent, i.e., 1/ in agreement with something; not 174 

contradicting something, 2/ happening in the same way and continuing for a period of time, 175 

3/ consistent with something in agreement with something, not contradicting something, 4/ 176 

having different parts that all agree with each other”. In the observation scientific 177 

community, consistency is usually understood as “agreement”, “compatibility” or “no 178 

contradiction”. When considering CDRs, “consistency” goes beyond “agreement” and rather 179 

refers to “compatibility”. Firstly, agreement per se can only be tested between datasets of 180 

the same variable. A mature terminology and a comprehensive set of mathematical tools for 181 

this purpose exists, which forms the basis of most calibration, validation and model 182 

evaluation activities. Secondly, there can even be cases where two datasets of the same 183 

variable agree (their bias is smaller than their combined uncertainties) but are inconsistent 184 

(for example if only one of two datasets shows a distinct diurnal or seasonal cycle). In 185 

contrast, regionally averaged time series of one variable can disagree (have regional biases 186 

larger than the combined uncertainties), but be consistent in their temporal behaviour, as 187 

shown for multi-sensor AOD records (Sogacheva, et al., 2020).  188 
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 10 

In a physical sense, consistency can be understood as fulfilling a conservation balance 189 

equation (of mass or energy) or exhibiting a correlation in time or space between two data 190 

records as expected by a physical theory. In CDR production, also simple category 191 

inconsistencies occur (e.g. for one pixel land cover assigns bare soil, while biomass gives a 192 

non-zero carbon mass to it). 193 

Immler et al. (2010) defined consistency between measurements of the GCOS 194 

Reference Upper Air Network (GRUAN) as “when the independent measurements agree to 195 

within their individual uncertainties”, which requires knowledge of their (combined) 196 

uncertainties. This definition applies to different measurements of the same variable, but in 197 

the wider context of Earth system monitoring, a definition of consistency across multiple 198 

ECVs is also needed.  199 

Several kinds of inconsistency between different data records of the same quantity or 200 

of different quantities can be recognised:  201 

- Inconsistencies due to differences in auxiliary datasets; 202 

- Temporal inhomogeneities in time series (e.g. due to calibration biases, degradation 203 

in data obtained from a sequence of different input data records, or sampling 204 

differences in terms of measurement time, frequency, or geographical coverage 205 

during gridding); 206 

- Spatial inhomogeneities due to combining fields from different datasets (e.g. with 207 

different observing geometry or different sampling, e.g. all-sky versus clear-sky 208 

sampling). 209 

Many of these inconsistencies are linked to the statistical properties of the raw data 210 

used to create a CDR, when for practical reasons simplifications and aggregations cannot be 211 

avoided.  212 
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 11 

To cover the wide range of aspects of consistency, it is convenient to structure it on 213 

three complementary levels:  214 

(1) Consistency on the technical level: Harmonised data format and metadata 215 

description to ease acquisition and combined usage of multiple CDRs;  216 

(2) Consistency on the retrieval level: Use of the same auxiliary datasets in retrievals to 217 

minimize contradictions in outputs linked to common information (e.g. a water 218 

mask);  219 

(3) Consistency on the scientific level: Compatibility of the relevant characteristics of two 220 

or more CDRs (e.g. patterns, variability, trends, …) with a reference (represented by a 221 

physical equation, a model or a fiducial reference) within their combined 222 

uncertainties.  223 

While consistency on a technical level is easy to define and needs limited scientific 224 

insight, it is often a resource-consuming barrier hindering data use. Thus the Earth 225 

observation community has focused on this area in recent years (e.g. by adopting common 226 

metadata standards). In particular, the CCI program has adopted existing solutions (and 227 

when needed developed new ones) that facilitate combined satellite-based CDR use. This 228 

includes a harmonized data format (netCDF, with a few exceptions where a different 229 

standard is needed for a particular community, e.g. shapefiles for glaciers) and a common 230 

metadata convention (CCI data standards: ESA, 2019), which follow the CF convention 231 

(http://cfconventions.org). It covers additional cross-ECV standardized metadata attributes, 232 

using common vocabularies for index terms and harmonized variable names, as well as a 233 

harmonized / interoperable data access portal with common catalogue and data services to 234 

simplify multi-quantity data search and download within the CCI portfolio 235 

(http://cci.esa.int/data). This common vocabulary also helps to reduce inconsistent 236 

nomenclature, such as labelling slightly different variables as the same retrieved quantity 237 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0127.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/doi/10.1175/BAM

S-D
-19-0127.1/4961371/bam

sd190127.pdf by guest on 03 July 2020

http://cfconventions.org/
http://cci.esa.int/data


 12 

(e.g. due to wavelength dependencies of retrieved information). Furthermore, the 238 

underlying documentation of algorithms and datasets in CCI has been harmonized to some 239 

extent, as in other initiatives such as the SAF network or NOAA CDR program. This 240 

information helps users to quickly understand each dataset and its strengths, weaknesses 241 

and limitations. A good example of the benefit of such harmonised climate data records on 242 

the technical level is given by the CCI toolbox (https://climatetoolbox.io), which can be used 243 

for harmonized data pre-processing, analysis and visualisation of the multiple CDRs in a 244 

standardized way. 245 

On the retrieval level, consistency aims at using the same (or a similar) observation 246 

strategy (same or similar satellite sensors, frequencies, etc.), and similar auxiliary datasets 247 

for the same variable in different retrieval algorithms. Those auxiliary datasets are either 248 

categorical datasets, so-called “masks”, or continuous datasets of physical variables. Typical 249 

masks used in many retrieval algorithms include, for example, a particular land cover 250 

(vegetated areas), land-water, sea ice, snow cover and glacier masks, since many retrieval 251 

algorithms behave differently over different surface types. Other masks commonly needed 252 

across many variables are cloud masks, since many retrievals in the visible to thermal 253 

spectral range need to avoid contamination by clouds. Frequently used continuous auxiliary 254 

data fields include meteorological fields (e.g. from reanalysis) and climatologies of 255 

atmospheric variables (e.g. water vapour, aerosols, ozone) to conduct atmospheric 256 

corrections of visible bands used to retrieve land and ocean ECVs.    257 

There is no sharp boundary between retrieval and scientific consistency. Ultimately, 258 

scientific consistency deals with the compatibility in CDR properties relevant for climate 259 

processes. All data records of a single ECV product, if obtained from different sources, need 260 

to be consistent within their uncertainties and within sampling differences. One aspect is 261 

consistency across borders in space (horizontally and vertically) and in time. Most 262 
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importantly, systematic biases between datasets need to be avoided as they may lead to 263 

errors when evaluating model performance (e.g. Waugh and Eyring, 2008). This applies to 264 

different combinations such as one variable based on multiple sensors, one sensor but using 265 

multiple algorithms, or combined satellite, model and in situ data. Finally, when several 266 

datasets of different variables are included in a physical model or budget equation, multi-267 

variable consistency needs to distinguish uncertainties of calculated closure budgets due to 268 

propagated input uncertainties from real physical process imbalances or net effects.   269 
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3. Consistency needs for CCI Earth System Climate Data Records 270 

In this section, linkages on the retrieval and scientific level between the different CCI 271 

ECVs (Figure 1) are analysed. This analysis remains at the high level of the GCOS ECVs while it 272 

is well understood that most ECVs consist of several different quantities, or so-called 273 

products (e.g. the glacier ECV in CCI consists of the three products glacier outlines, elevation 274 

change and velocity). In most of the analysis in this study the primary product of an ECV is 275 

considered (e.g. aerosol optical depth for aerosol properties) and the most common 276 

methodology used to retrieve it. This means that for using a specific CDR of one ECV there 277 

may be a need to assess in more detail its linkages if, for example, a new retrieval technique 278 

in another spectral range is considered or if another product of this ECV is assessed. Detailed 279 

information on the products of each CCI ECV for which CDRs have been processed is 280 

available at http://cci.esa.int.  281 

As a first step, the needs for consistency between ECVs on the retrieval level are 282 

assessed. Retrievals of Earth system variables from satellite observations aim to produce 283 

high quality CDRs by constraining the (often under-determined) inversion equations as good 284 

as possible. Typically, the measurements are chosen to have high sensitivity to the target 285 

variable, but they are usually subject to perturbations from other variables. In such cases, 286 

the inversion needs to either co-retrieve these additional variables or use auxiliary datasets 287 

to describe their spatio-temporal distributions. Moreover, different retrieval algorithms are 288 

often optimal for use over different surface types as their reflectance or spectral 289 

characteristics are highly variable (e.g. over dark water or over bright land). The use of 290 

different approaches for obtaining the same variable in different retrieval algorithms is one 291 

possible source of inconsistency between CDRs.  292 

After processing, all CDRs have to pass validation against external reference datasets 293 

(e.g. from ground-based stations) to quantify their accuracy. Furthermore, CCI insists for 294 
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CDRs to be accompanied by proper uncertainty characterisation (using error propagation or 295 

uncertainty characterization during validation) within their data files (Merchant et al., 2017), 296 

so that uncertainties can be assessed when using the datasets. However, since reference 297 

data can have temporal or spatial representativeness issues and different validation 298 

methods also have their inconsistencies, unexplored uncertainties may remain (for the 299 

retrieved values themselves and for the estimated uncertainties). Validation and error 300 

propagation implicitly quantify inconsistencies from using imperfect auxiliary datasets and 301 

retrieval simplifications to within uncertainties. However, proof of consistency needs to 302 

explicitly test together the CDRs considered. 303 

The part of Table 1 that is above the diagonal summarizes links between ECVs 304 

generated and analysed by CCI with regard to their retrieval consistency. A need for retrieval 305 

consistency is identified where either one or both retrievals rely on consistent co-retrieved 306 

or auxiliary variables of the other ECV (links only within CCI are considered, but there are 307 

other products, algorithms or sensors for which these may not apply). 308 

The part of Table 1 below the diagonal summarizes the need for consistency on the 309 

scientific level based on our knowledge of how two variables are linked by Earth system 310 

processes or cycles in more detail. For this, the relevance of CCI ECVs for the energy, water 311 

and carbon cycles is briefly recalled. Figure 2 lists available or upcoming ECVs for which ESA 312 

CCI generates CDRs that contribute to the characterisation of these three main cycles. For 313 

simplicity, each ECV is only attributed to the cycle in which it plays the most important role. 314 

Practically all ECVs contribute to the energy cycle, either directly through radiation 315 

interaction or through mass-attached energy transport in the water or carbon cycle. Studies 316 

of sub-elements of these main cycles may also be relevant (e.g. physical processes such as 317 

emission, transport, deposition or radiation interactions, chemical transformations; also 318 

regional limitations, such as ice-free conditions) which may only require consistency among a 319 
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reduced set of ECVs. Some further details on the CCI CDRs for the three cycles are provided 320 

in the following. 321 

Carbon cycle: CCI CDRs help quantifying the dynamics of the amount of carbon stored 322 

in the atmosphere, oceans and terrestrial biosphere and the fluxes between these reservoirs 323 

(see overview about the carbon cycle in Le Quére et al., 2018). CO2 in the atmosphere is a 324 

key measure of the anthropogenic perturbation to the carbon cycle. The air-sea CO2 flux is 325 

strongly affected by sea-surface temperature (SST) and ocean photosynthetic activity 326 

(monitored using ocean colour observations). The CCI CDRs also help constraining carbon 327 

fluxes from the land biosphere (e.g. Reuter, et al., 2017) including land use change and 328 

biomass burning emissions, together with direct estimates of above-ground biomass and 329 

burned area (Chuvieco et al., 2019). Other CCI CDRs of importance to the carbon cycle are 330 

snow cover (which affects the duration and start of photosynthetic processes in boreal 331 

forests; Pulliainen et al., 2017), similar to the impact of sea ice on marine photosynthesis in 332 

high latitudes, soil moisture (which affects land-atmosphere CO2 fluxes), permafrost (which 333 

contains frozen carbon stores with about twice the mass of atmospheric carbon), and sea 334 

surface salinity, which, together with SST, determines CO2 solubility, with important impacts 335 

in rainy regions and serves as a proxy for sea water alkalinity (Vinogradova et al., 2019). 336 

Water cycle: CCI helps quantifying the global water cycle over land and ocean (see 337 

overview in e.g. Levizzani and Cattani, 2019) by providing CDRs related to the reservoirs 338 

within the water cycle (lake levels, sea level, sea ice, ice sheets, glaciers, soil moisture, and 339 

snow), atmospheric water vapour content (water vapour) and clouds. From these, processes 340 

such as precipitation and runoff that transfer water between the various reservoirs may be 341 

inferred. CCI delivers additional relevant parameters such as sea surface salinity (related to 342 

precipitation, evaporation and runoff), SST and LST (determining evaporation), land cover 343 

and biomass (both linked to evapotranspiration).  344 
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Energy cycle: CCI also helps constraining the global energy cycle (for an overview see 345 

Allan, 2012) by providing CDRs for SST and LST, land and sea ice, as well as snow cover, sea 346 

level (which is affected among others by the ocean heat content and land ice melt), sea 347 

state, clouds, water vapour, ozone, greenhouse gases and aerosols that help determine the 348 

vertical temperature structure of the atmosphere. Finally, the biosphere (biomass) may also 349 

be considered a part of the energy cycle since it converts solar energy into chemically-stored 350 

energy (organic matter). In the oceans, a significant portion of the organic matter sinks out 351 

of the surface layers, exporting the energy to the deep ocean (with the photosynthesis 352 

activity being observed indirectly through ocean colour).   353 
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4. Concept for assessing consistency on different levels 354 

Due to the complexity of different consistency aspects no single method can be used 355 

for assessing consistency of CDRs on various levels. Therefore, a concept employing a range 356 

of appropriate methods was developed in CCI, which is summarized here and then illustrated 357 

with short examples.  358 

 359 

4.1 Overview: Methods to assess consistency 360 

All methods for assessing consistency contain several key elements. Firstly, any method 361 

needs to be based on physical background knowledge to understand the relevance of any 362 

disagreement or incompatibility. Such background knowledge can be a simple principle (e.g. 363 

if the land cover is bare soil and the biomass product provides a high biomass value, there is 364 

an obvious inconsistency) or knowledge of the sensitivity of a target variable toward an 365 

auxiliary dataset, or a more complex physical equation or “model”. Secondly, any 366 

assessment needs to select an appropriate characteristic (patterns, time series, masks) 367 

tailored towards the relevant process (or cycle) and choose a suitable mathematical tool 368 

(metric). Finally, this metric needs to be evaluated against the relevant  physical background 369 

knowledge while the threshold on the chosen metric for judging consistency depends on the 370 

considered process or cycle and the datasets. In order to make any assessment of 371 

consistency objective, a study needs to specify the threshold used. This is shown for the 372 

following examples for various metrics.  373 

In essence, consistency then means that several datasets have been evaluated against the 374 

underlying physical background knowledge and were found “fit for purpose” for a specific 375 

application domain. This leads to cases where seemingly small values of a chosen metric 376 

(compared to its uncertainty) can mean inconsistency, whilst in other cases apparently large 377 

deviations mean consistency, as will be shown in the examples of this section. Table 2 lists a 378 
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variety of related basic principles and methods to assess consistency on different levels used 379 

in the following examples.   380 

 381 

4.2 Methods to assess retrieval level consistency 382 

As a principle, retrieval level inconsistencies become significant if the difference of 383 

the auxiliary data used in two independent processing systems multiplied by the sensitivity 384 

of the target variable to the respective auxiliary variable is larger than the target uncertainty. 385 

This means that testing retrieval level consistency needs to assess auxiliary dataset 386 

differences in the light of target variable sensitivities or incompatibilities. 387 

 388 

Consistency of categorical auxiliary datasets (“masks”) 389 

A first approach to assess consistency of masks used in independent retrievals lies in 390 

visual inspection of combined maps of datasets, as for example, of surface temperature 391 

composed from four independent CDRs for land (LST), sea surface (SST), ice (IST) and lake 392 

surface water (LSWT) temperatures against required pixel-level agreement of the masks. In 393 

CCI the four retrievals use a common land-sea mask (and sea-ice mask), but apply different 394 

cloud mask algorithms optimized over land, sea ice and water surfaces. As shown in Figure 3, 395 

the reader can visually confirm the absence of any obvious scatter near the land-sea borders, 396 

which indicates that the land-sea masks used in the different processing systems are 397 

consistent. Additionally, the application of different optimal cloud masking in the retrievals 398 

for LST and SST has led to obvious discontinuities in the sampling with temperature 399 

observations at the land-sea border, which may be judged as second-order inconsistencies. 400 

Such visual inspection of a set of typical scenes can be employed for most ECVs to get an 401 

understanding of their physical consistency within one variable across borders of the same 402 

mask used in different retrievals. Additionally, Figure 3 shows a case where a contrast in the 403 
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values in the ECVs between neighbouring pixels (surface temperature of ocean and water) 404 

does not mean inconsistency, but reflects physical differences arising from the different heat 405 

capacities of water and land. 406 

The retrieval of many ECVs needs a cloud mask to avoid cloud contamination. Also 407 

cloud properties need a cloud mask to ensure that a pixel truly represents cloud (Poulson, et 408 

al., 2012). When, for example, aerosol and cloud property retrievals for the same sensor are 409 

implemented as separate algorithms (as is usually the case), individual pixels need to be 410 

analysed either as cloud or as aerosol; analysis of the same pixel as aerosol and as cloud 411 

under the wrong assumption (cloud-free or aerosol-free) could severely degrade the 412 

retrievals and must be minimized (e.g. Sogacheva et al., 2017; Li et al., 2009). To assess if this 413 

principle is fulfilled, independent AATSR cloud masks used in the aerosol and cloud products 414 

were analysed for four days in September 2008 (covering difficult scenes with high aerosol 415 

loads or complicated mixtures of aerosol and clouds). Figure 4 shows a map of different 416 

combinations of cloud / no cloud assignment by the two cloud masks and a contingency 417 

matrix of those class combinations. The matrix shows, that while 21% of observations are 418 

not used for aerosol or cloud retrievals at all (losing sampling coverage but not leading to 419 

inconsistency), only 0.3% of them were found to violate the physical principle (i.e., no pixel 420 

must be double-analysed as clouds and as aerosols). Even if a very stringent threshold for 421 

this fraction of 1% is set (since cloud mask errors lead to very large AOD errors) the two 422 

cloud masks are fully consistent. The map also shows that the inconsistent cases (yellow 423 

pixels) occur only over land but in all climate zones. Together with the underlying physical 424 

principle one can use such a contingency matrix / mapping of class combinations to assess 425 

the contingency of masks and to understand where / when inconsistencies mostly occur and 426 

need to be corrected. 427 

Another typical aspect of multi-quantity spatial consistency is the agreement of 428 
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locations between the outlines of physically related quantities (different products within one 429 

ECV, between different ECVs). For example, glacier outlines are derived from high-resolution 430 

satellite imagery or aerial photography using semi-automated mapping techniques or 431 

manual on-screen digitization (Paul et al., 2015). Due to their higher spatial resolution, the 432 

location of glaciers can be used for land cover as an independent validation source for its 433 

“permanent ice and snow” classes. Furthermore, glacier maps serve as an important 434 

auxiliary dataset for clouds and LST (to choose the correct retrieval algorithm), and lakes as a 435 

reciprocal mask (these can only occur in places not covered by glaciers) for sea ice, ice sheets 436 

and permafrost. Again, contingency matrices between glacier or lake location and the other 437 

variables can be used to assess consistency in the light of the expected compatible 438 

combinations; the threshold for the acceptable fraction of inconsistent pixels needs to be set 439 

depending on the potential harm of misclassifications. A limitation for the assessment of 440 

categorical auxiliary datasets lies in the fact that mixed cases often exist, in particular for 441 

coarser spatial resolutions. 442 

  443 

Consistency of continuous auxiliary datasets of the same quantity 444 

Often the retrieval of a land / ocean CDR is affected by perturbations in the measured 445 

bands due to atmospheric absorption or scattering, so an atmospheric correction needs to 446 

be applied. Examples of necessary atmospheric corrections include visible or thermal 447 

retrievals impacted by aerosol, water vapour, ozone or other trace gases (e.g. Popp 1995). A 448 

first step in algorithm development would be to assess the sensitivities of the measured 449 

reflectances to the various absorbing trace gases and to aerosol particles (e.g. Holzer-Popp, 450 

et al., 2002). This provides the basis for deciding which corrections can be neglected or made 451 

with a simple parameterization, and which need more precise corrections using an auxiliary 452 

dataset of distributions of the responsible agents influencing the signal. When the auxiliary 453 
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datasets come from the same sensor as the target CDR, accurate spatio-temporal matching 454 

(pixel colocation) would be possible. However, in cases where the auxiliary data come from 455 

different sensors, it may be necessary to deal with spatial and temporal mismatches, 456 

introducing a requirement for assessment of the associated additional uncertainties. Figure 5 457 

shows a gridded map of differences of aerosol optical depth between the by-products of the 458 

ocean-colour atmospheric correction of MERIS data (processed using a NASA algorithm) and 459 

the corresponding CCI aerosol ECV product from AATSR, both for 865 nm (both sensors were 460 

on-board the same platform ENVISAT and thus exhibit zero time difference). The global 461 

average difference of AOD between both products of 0.03 is acceptable for the purpose of 462 

aerosol corrections, but the variability is larger for the aerosol ECV product than for the 463 

ocean colour product (0.10±0.11 cf. 0.13±0.04 respectively), which has higher AOD values 464 

over the open ocean, but lower ones closer to land. Given the importance of AOD in ocean-465 

colour atmospheric correction (IOCCG, 2010), the aerosol-corrected ocean colour ECV can be 466 

regarded as consistent with the aerosol ECV in its global average, but not regionally. These 467 

results merit further investigations to identify the sources of the discrepancies and to assess 468 

the potential to improve the MERIS ocean-colour atmospheric correction algorithm by using 469 

concurrent auxiliary information on AOD from the main ECV aerosol product obtained from 470 

AATSR.  471 

 472 

4.3 Methods to assess scientific consistency 473 

Scientific consistency includes self-consistency within one quantity (when 474 

independently retrieved pieces are integrated into a longer time series or a larger map) and 475 

mutual consistency between different quantities (different products of one ECV or multiple 476 

ECV CDRs) as a consequence of all types of retrieval inconsistencies, limitations of the 477 
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retrieval algorithms or sensor calibrations, as well as sampling differences between 478 

aggregated datasets.  479 

 480 

Self-consistency of a single quantity 481 

One major problem of satellite-based CDRs is that satellite instruments typically 482 

survive in orbit only for a limited time, so that a long-term record needs to be constructed 483 

from combining data from a time series of similar sensors. Plotting regional or global data 484 

records of the related parts of a time series often allows visual inspection of their 485 

consistency, where “jumps” or “breakpoints” are obvious against background knowledge of 486 

any known or absent true discontinuities. As example, column-averaged dry-air mole 487 

fractions (“vertical columns” XCO2) of carbon dioxide (Buchwitz et al., 2015) from the 488 

greenhouse gas (GHG) ECV are selected. Those CDRs serve as input data for inverse 489 

modelling schemes to improve the knowledge on natural and anthropogenic sources and 490 

sinks (e.g. Reuter et al., 2017). In creating a multi-sensor CDR covering a longer time period, 491 

a merging algorithm (EMMA, Reuter et al., 2013, 2020) corrects potential remaining offsets 492 

of individual datasets to avoid jumps in the merged time series. In EMMA, the ensemble 493 

members have been bias corrected and brought to common a priori CO2 profiles before 494 

being combined to obtain the merged product. Figure 6 shows at the top the resulting multi-495 

sensor, multi-algorithm monthly mean XCO2 merged record for 2003-2018 for northern mid-496 

latitudes (30oN-60oN) with the known nearly linear increase in time and seasonal cycle and 497 

no remaining biases, while in the bottom panel differences between individual ensemble 498 

members and the merged product before the corrections are shown to be larger than the 499 

required XCO2 uncertainties of 0.5 ppm. In this case, this threshold for the target 500 

uncertainties of the gap-corrected merged dataset is defined by the user requirement for 501 

the application of XCO2 trend analysis.  502 
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Similarly, spatial inconsistencies in one variable can often be assessed visually by 503 

looking at maps combined from independent pieces (different sensors, different overpass 504 

times of the same sensor with different observing geometries, different algorithms). In this 505 

case, inconsistencies are visible as artificial border lines or gradients that are larger than the 506 

noise in the image. Again, physical understanding is needed to decide whether a 507 

discontinuity at a physical border is real or erroneous (e.g. surface temperature often shows 508 

true differences between land and sea as shown in Fig. 3, while a dust plume should be 509 

continuous). Another example for spatial inconsistencies revealed by data overlay are glacier 510 

outlines derived from satellite images that have been orthorectified with different digital 511 

elevation models (DEMs). In steep and/or high topography geolocation shifts of several 512 

pixels (about 30 - 90 m) can occur, making any change assessment (trend analysis) or joint 513 

use of sensors nearly impossible (Kääb et al., 2016).  514 

Another way of testing the consistency of independently retrieved CDRs for one 515 

variable is by comparing estimates of a derived quantity such as their trend with a physical 516 

equation. For example, within the GEWEX Water Vapour Assessment (G-VAP, see 517 

http://gewex-vap.org/ for details), inter-comparisons of total column water vapour (TCWV) 518 

trend estimates from different CDRs were made and it was concluded that the trend 519 

estimates are generally significantly different. It was then shown that several data records 520 

disagree with the physical expectation from the Clausius-Clapeyron equation using data over 521 

the global ice-free ocean (Schröder et al. 2016, 2019). After homogenisation, a new analysis 522 

was applied to the trend estimates and associated results are shown in Figure 7. While the 523 

diversity in original trend estimates (-0.15 to +0.12 kg/m2/year) is several times higher than 524 

individual uncertainties, it is largely reduced after homogenisation (-0.02 to +0.04 525 

kg/m2/year), but still slightly larger than the individual trend uncertainties (up to ± 0.01 526 

kg/m2/year). As a consequence, after homogenization there was a significant increase in the 527 
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fraction of datasets that can be seen as consistent as indicated by agreement of trends 528 

within twice their combined uncertainties.  529 

 530 

Mutual consistency between different quantities 531 

In testing multiple quantity consistency, the role of the underlying background 532 

knowledge becomes stronger since the physical processes connecting different ECVs need to 533 

be taken into account. One method to test the consistency of two ECVs is by looking at their 534 

correlations. For example, in the lower stratosphere, the strong physical dependency of 535 

lower stratospheric water vapour on tropical tropopause temperatures can be exploited to 536 

test the consistency between climate data records of temperature and stratospheric water 537 

vapour as highlighted by Hegglin et al. (2014). This study proposed a new merging method 538 

that uses a chemistry-climate model as a transfer function between different satellite 539 

instrument records to create a CDR. The methodology allows the bias between instruments 540 

to be determined throughout the instrument’s lifetime and not only for the overlap period 541 

(when old instruments may show first signs of degradation), hence improving 542 

characterization of systematic differences (or biases) between datasets. By using the 543 

correlation between the newly merged stratospheric water vapour record and the zonal 544 

mean temperature from ERA-interim, visual inspection indicated that the new merging 545 

method led to physically more consistent results than the traditional one based on bias-546 

correction of instruments during overlap periods. Figure 8 shows the visually well correlated 547 

time series of a prototype version of the stratospheric water vapour CDR merged using the 548 

new methodology in comparison with zonal mean temperatures at 100 hPa from ERA5 in the 549 

tropical region (left panel). We set the threshold for correlations to accept consistency with 550 

medium (high) confidence to 0.5 (0.7) since the co-variability of time series of two different 551 

variables may also be influenced by other processes which reduce the correlation.  In this 552 
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case (right panel), a correlation of 0.58 suggests that the two variables are physically 553 

consistent with medium confidence; if only assessing the last 15 years (not shown) with 554 

better data quality, the correlation increases to 0.69 (consistency with high confidence).  555 

Alternatively, differences of multi-year trend maps of one variable can be used to 556 

assess the consistency of two different ECV CDRs. The example here is the inter-comparison 557 

between wave height (measured by satellite altimetry) and sea ice concentrations assessed 558 

in Stopa et al. (2016). Daily sea ice concentrations produced from the Special Sensor 559 

Microwave Imager (SSM/I) by IFREMER (Ezraty et al., 2007) are used to define open ocean 560 

versus sea ice conditions with a 15% concentration threshold at 12.5 km resolution within 561 

the Arctic Ocean. For the period 1992-2014, the SSM/I ice concentrations are used along 562 

with wind vectors from the Climate Forecast System Reanalysis to reproduce the wave field 563 

through the numerical wave model, WAVEWATCH3 (WW3, Tolman et al., 2014), which 564 

includes wave-ice interaction through an under-ice parameterization of wave dissipation. 565 

Figure 9 shows a comparison of the trends of the significant wave height (Hs) directly 566 

measured with altimetry (denoted ALT, Queffeulou and Croize-Fillon, 2015) and from the co-567 

located model data from WW3 (denoted WW3 CoLoc) in which SSM/I ice concentrations 568 

have been used. Qualitatively, the regional patterns match between the two datasets, 569 

despite stronger trends in the altimeters (of up to 1 cm / y). At present the confidence 570 

interval for trends in wave heights is not known. Therefore the quantitative discrepancies 571 

between modeled and measured trends here could be due to both systematic time-varying 572 

biases in the wave height ECV, which are expected to be only a function of time and sensor, 573 

or to a trend error in the surface wind reanalysis used to drive the wave model. However, 574 

the wind trends are also constrained by sea level pressure data and sea ice drift (e.g. Spreen 575 

et al. 2011). In the future, a wider range of ECVs, combined with in situ data and models, 576 

may be used for a quantitative refinement of sea state trends. 577 
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An example of testing the (anti-)correlation of multiple regional ECV CDRs as 578 

predicted by physical theory, is the use of the El Niño Southern Oscillation (ENSO) index for 579 

ECV anomalies in the tropical Pacific Ocean Niño3.4 region (5°S-5°N, 190°E-240°E). This 580 

natural phenomenon is an ideal candidate for investigating multiple ECV consistency due to 581 

its relatively short timescale, large amplitude and multiple ECVs affected by it. This first 582 

attempt focusses on the main ENSO signatures at large scale. Physical or biological processes 583 

leading to spatio-temporal lags of a few months or a few degrees longitude between some 584 

variables have been neglected. This could be refined in future studies. ENSO variability is 585 

compared in several ocean (SST, SL, SSS, Chlor_a), atmosphere (CFChigh, TCWV, AOD550) 586 

and land (SM, burned area / fire) ECV products - see Table A1 for the acronyms, more 587 

detailed information on the datasets and their correlations. All variables were interpolated 588 

to a common 1 by 1° grid, de-seasonalised by removing the corresponding monthly mean 589 

value and normalised by dividing by the standard deviations for their respective available 590 

time period. Figure 10 shows the index variability across the tropical Pacific Ocean for the 591 

ECVs in time-longitude anomaly cross-sections. The ocean and most atmosphere ECV time 592 

series show consistent spatio-temporal co-variability, as expected. Whereas SST and SL have 593 

their largest variability in the Niño3.4 region, CFChigh and TCWV variability peak further west 594 

(~180°E), except for the strong El Niño years 1982/83, 1997/98 and 2015/16. Moreover, SSS 595 

and Chlor_a are anti-correlated with SST, as expected from a reduced upwelling. For ECVs 596 

affected indirectly by El Niño from dry conditions and wild fires over Indonesia (fire, aerosol 597 

and soil moisture), the highest correlations occur in their Indonesian time series (10°S-10°N, 598 

100°E-150°E). For certain El Niño3.4 years, e.g. 1997, 2007 and 2015 there are clear 599 

indicators of co-variability of them and SST (Fig. 10g). Here again the use of a correlation 600 

threshold of 0.5 (0.7) for medium (high) confidence on consistency is adopted. In conclusion, 601 

by quantifying (anti-) correlations between these nine independently derived satellite ECVs 602 
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versus the scientific understanding of the ENSO phenomenon, a medium (high) confidence in 603 

their consistency can be shown for eight (four) of them.  604 

 605 

4.4 State of consistency assessments for CCI ECVs 606 

Several examples of closure / budget studies of partial Earth system cycles 607 

demonstrate the usefulness of CCI (and several other) CDRs that are consistent at all three 608 

levels. For example, closure of the carbon budget is still an outstanding scientific challenge 609 

(Le Quéré et al. 2018) that is impacted by CDR inconsistencies. Different CCI products 610 

provide direct and indirect constraints on carbon fluxes that help to improve the consistency 611 

of carbon budgets. For example, CCI greenhouse gas products are used to inform 612 

atmospheric inversions. Top down inversion results can be complemented by other ECVs to 613 

attribute diagnosed fluxes to different components such as biomass carbon changes 614 

(biomass CCI product), fire emissions (CCI products on burned area and fire size) and land 615 

use change emissions (land cover CCI products).  616 

Another example is the regional closure of the water budget. Based on multiple 617 

satellite ECVs it has been demonstrated that the water budget can be closed within less than 618 

10% uncertainty at a continental annual time scale, while, at monthly time scales, its 619 

residuals and uncertainty estimates are larger (about 20%; Rodell et al., 2015). These 620 

uncertainties in the water budget closure can be reduced by introducing additional 621 

constraints, e.g. by using multiple CDRs with different uncertainties of a single quantity or by 622 

additionally forcing closure of the atmosphere and ocean terms. Uncertainties in existing 623 

CDRs need to be further reduced and new CDRs of other key variables (most importantly, 624 

river discharge and irrigation water use) need to be included or developed to reach the 5% 625 

closure error targeted by GCOS (GCOS, 2016).  626 
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The global mean sea level budget closure has also been assessed within the CCI 627 

program by comparing the sum of changes in ocean thermal expansion, land ice melt and 628 

liquid water storage on continents with the total observed sea level change. The latter can 629 

be estimated globally from satellite altimetry with an accuracy of about 10% on different 630 

time scales (e.g. WCRP sea level budget group, 2018). These observations enable closure of 631 

the trend in sea level budget with an uncertainty of ±0.3 mm/year over the last 25 years. The 632 

sea level budget involves additional variables from the global water budget (through land ice 633 

and liquid water components) and from the global energy budget (through thermal 634 

expansion directly related to global ocean heat content; Meyssignac et al. 2017) and thus 635 

connects the energy and water budgets. At regional scale, uncertainties in the observed 636 

components of the sea level budget are considerably larger (few tens of percent) and need 637 

to be further reduced to reach the regional GCOS target. 638 

Finally, an assessment of the current state of affairs regarding consistency between 639 

the CDRs of the CCI program was made based on the combined scientific expertise of the CCI 640 

community; it is not meant to be exhaustive but intended as initial guidance for the use of 641 

multiple ECV CDRs or for defining priorities in further consistency analysis. Table 3 provides 642 

for each pair of CDRs the consistency status as either: “no evident need to consider 643 

consistency”, “further studies needed”, “consistency explicitly ensured by shared processing 644 

or co-retrieving”, or “studies already performed”, referenced to Table A2 with the underlying 645 

publication or technical report (characterized as “theoretical”, “exemplary / partial” or 646 

“comprehensive”). As can be seen from Table 3, quite some work remains to be done where 647 

the definition and concept presented in this paper can be applied and further refined.  648 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0127.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/doi/10.1175/BAM

S-D
-19-0127.1/4961371/bam

sd190127.pdf by guest on 03 July 2020



 30 

5. Summary and conclusions 649 

Climate Data Records of Essential Climate Variables derived from satellite 650 

instruments provide essential information to monitor the state of the Earth system and its 651 

changing climate. A key requirement for these CDRs to be useful for Earth system science 652 

applications is that the CDRs are internally and mutually consistent. The ESA CCI program 653 

provides a set of CDRs for 21 GCOS ECVs in a common framework, and from the outset has 654 

invested heavily in establishing their consistency, as presented in this study. To our 655 

knowledge no comprehensive definition of CDR consistency exists. Therefore a three-level 656 

definition of consistency applicable to single- and multiple-variable cases is proposed and a 657 

concept for assessing if two or more CDRs are consistent with each other and possibly with 658 

reference data is presented. On the technical level, straightforward data access and usage, 659 

including availability of comprehensive documentation and product user guides, is needed. 660 

On the retrieval level, one needs to limit contradictions in the use of auxiliary datasets 661 

(masks or continuous fields) of the same variables in separate processing chains. On the 662 

scientific level, consistency of multiple ECV CDRs means judging their relevant correlations, 663 

patterns, periodicity, trends, etc. (as appropriate for a given variable, process or cycle) in the 664 

light of underlying physical background knowledge (e.g., by jointly confronting them with a 665 

model). Through this link with background knowledge, “consistency” as defined in this study 666 

goes beyond “agreement” and relies rather on “compatibility”. Finding inconsistencies in one 667 

or more ECV dataset(s) (i.e. patterns whose disagreements exceed underlying uncertainties, 668 

contradict physical principles or a well-founded model) often indicates errors in a dataset or 669 

model whose resolution can lead to new scientific understanding. 670 

This study also provides an overview of the technical consistency of CCI CDRs 671 

(common format and metadata standards, common data portal, harmonized 672 

documentation, common uncertainty reporting). An open issue in this regard is 673 
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harmonization across programs and communities. Here, the CCI program has made an 674 

important step by adopting the netCDF format, with the CF and ACDD conventions (the de-675 

facto standard in the modelling community) for its gridded satellite data records. The 676 

Climate Data Store (CDS) of the Copernicus Climate Change Service (C3S) is also based largely 677 

on CCI standards. Such common standards are a prerequisite for the use of automated data 678 

services for accessing multiple data sources with little manual interaction, hence facilitating 679 

use of the data in scientific studies across multiple ECVs. 680 

The discussion of a concept for assessing consistency and related methods on the 681 

retrieval and scientific level shows how consistency with regard to different categorical and 682 

continuous auxiliary datasets can be tested and how the assessment of single-variable self-683 

consistency and multiple quantity mutual consistency can be conducted. In all these 684 

methods a basic understanding of “the truth” needs to be employed. A relevant 685 

characteristic of an ECV and an appropriate metric (e.g. bias, correlation, contingency matrix, 686 

…) for its evaluation need to be chosen. A tabular summary of different methods to assess 687 

consistency is given in Table 2. For each of the different metrics, a threshold needs to be 688 

defined to judge on consistency of two datasets. This may well differ from commonly applied 689 

thresholds for validation purposes since also other processes than consistency may affect 690 

the datasets. We suggest as a minimum requirement that each consistency study states the 691 

applied thresholds, as is done for the examples in this paper. Whereas the methods used to 692 

assess consistency rely on well-established tools for calibration and validation, placing them 693 

into the systematic context with relevance to consistency as done here, can serve as a 694 

practical guideline to consistency assessment. A brief high-level analysis of the inter-695 

dependencies of CCI ECVs at the retrieval and scientific levels (Table 1) is provided to 696 

understand where consistency is needed and thus needs to be checked. Finally a high-level 697 
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assessment of the current state of affairs regarding consistency assessment between the 698 

CDRs of the CCI program (Table 3) is compiled to outline possible further research needs. 699 

When discussing consistency, datasets from sources other than satellite data (e.g. 700 

Earth system models) are often required to comprehensively study an Earth system cycle, 701 

and their uncertainties also need to be considered, together with uncertainties in simplified 702 

or estimated budget equations. It is well understood that establishing consistency between 703 

two or more variables requires targeted analysis. Within and outside CCI much effort has 704 

been spent on quantifying the sensitivities and dependencies of the retrieved quantities. 705 

However, a lot more remains to be done in this area.  706 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0127.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/doi/10.1175/BAM

S-D
-19-0127.1/4961371/bam

sd190127.pdf by guest on 03 July 2020



 33 

6. Acknowledgements 707 

This study is based on ongoing work of altogether 30 projects of the ESA Climate 708 

Change Initiative (23 ECV projects, the Climate Model User Group project, cross-cutting 709 

outreach components on portal, toolbox, visualisation; CCI data standards and system 710 

engineering working group). We are grateful to ESA for creating the CCI program which has 711 

strengthened the consistency of the many research communities related to developing, 712 

processing, qualifying and using satellite CDRs. We are grateful to the several hundred 713 

scientists building the CCI community for making a consistent Earth observation based data 714 

repository real. The “operational” part of the CCI program has been transferred to the 715 

Copernicus Climate Change Service (C3S, (re-)processing to extend the CDRs, associated 716 

quality control, user support). We are also thankful for many other datasets from outside CCI 717 

and C3S which help cover all relevant ECVs: GOSAT Level 1 data from JAXA, GOSAT Level 2 718 

data from NIES and NASA, OCO-2 Level 1 and Level 2 data from NASA, HOAPS data from 719 

EUMETSAT CM SAF, water vapour records from the G-VAP data archive, CAMS and ERA-5 720 

data from ECMWF / Copernicus Atmosphere and Climate Change Services , SSM/I daily sea 721 

ice concentrations from IFREMER, and wind vectors from the Climate Forecast System 722 

Reanalysis.  723 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0127.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/doi/10.1175/BAM

S-D
-19-0127.1/4961371/bam

sd190127.pdf by guest on 03 July 2020



 34 

Appendix 724 

 725 

Tables A1 and A2  726 
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Table captions 984 

Table 1: Links between ECVs on the retrieval (above the diagonal) and scientific (below the 985 

diagonal) level which need to be consistent if used together. Weak linkages are indicated in 986 

brackets. Cycles are indicated with the following acronyms: C=carbon cycle, W=water cycle, 987 

E=energy cycle. Processes are indicated with the following acronyms: r=radiation interaction, 988 

d=deposition, e=emission / evaporation, t=transport, c=chemical transformation, 989 

mtf=melting / thawing / freezing, i=ecosystem interaction, a=air sea fluxes of carbon and 990 

water, m=mask. 991 

Table 2: Summary of assessment methods for consistency on different levels and types 992 

Table 3: Consistency analysis status between pairs of CCI ECVs: intrinsically assured (*), study 993 

needed (X), study done (c = comprehensive, e = exemplary, t = theoretical) - empty fields 994 

indicate that no study is needed, this link cannot be studied (e. g. due to resolution) or the 995 

link is considered weak. Numbered references for conducted studies are provided in the 996 

appendix (Table A2). 997 

Table A1: Information on the datasets used for figure 10: versions, DOIs and references. The 998 

correlations between the SST Niño3.4 region (averaged 5°S to 5°N, 190°E to 240°E) time 999 

series and the other ECVS’s Niño3.4 time series (and for SM, BA and AOD time series with 1000 

Indonesia (averaged 10°S to 10°N, 100°E to 150°E) are given in the right column. 1001 

Table A2: Snapshot of publications or technical reports (available from ESA CCI program) 1002 

until the submission of this manuscript behind entries on done consistency studies in Table 1003 

3.  1004 
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Tables 1005 

 1006 

Table 1: Links between ECVs on the retrieval (above the diagonal) and scientific (below the 1007 

diagonal) level which need to be consistent if used together. Weak linkages are indicated in 1008 

brackets. Cycles are indicated with the following acronyms: C=carbon cycle, W=water cycle, 1009 

E=energy cycle. Processes are indicated with the following acronyms: r=radiation interaction, 1010 

d=deposition, e=emission / evaporation, t=transport, c=chemical transformation, 1011 

mtf=melting / thawing / freezing, i=ecosystem interaction, a=air land/sea fluxes of carbon 1012 

and water, m=mask. 1013 
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Table 2: Summary of assessment methods for consistency on different levels and types  1015 

 Consistency type  Required background 
knowledge 

Assessment method 

Retrieval level 

 Categorical auxiliary data 
(“masks”) 

Incompatible mask classes  Visual: combined images 
Contingency matrix 
Class combination maps 

 Continuous auxiliary data Target variable sensitivity to 
auxiliary variable 

Visual: homogeneity 
Difference maps 
Statistical comparison 

Scientific level 

 Self-consistency 
(single quantity)  

Behaviour of one quantity 
Known record features 
Known map features 
Physical equation 

Visual: features as expected 
Quantitative variability 
Trend analysis 

 Mutual consistency 
(multiple quantities) 

Linkage between quantities 
Physical model 
Understood Earth system 
phenomena 
 

Difference maps 
Trend comparisons 
Correlations and other 
measures of co-variability 
 

  1016 
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Table 3: Consistency analysis status between pairs of CCI ECVs: intrinsically assured (*), study 1017 

needed (X), study done (c = comprehensive, e = exemplary, t = theoretical) - empty fields 1018 

indicate that no study is needed, this link cannot be studied (e. g. due to resolution) or the 1019 

link is considered weak. Numbered references for conducted studies are provided in the 1020 

appendix (Table A2). 1021 
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GHGs    * e 19  X X  X  t 1  X  X   X   

Ozone    X X     X  X  X X   X   

Water vapour    X  X   X t 2 X  X X  X X   

Fire   e 14 e 23 e 23 X X t 16, 17 t 3 e 13 e 27 e 15 X e 28  e 18   

Ice-Sheets   X X c21,22  X X X X    e20  X   

Land cover   X * X X t 4 X X c 25       

Soil moisture   X X X t 5 X X * * *  * *  

Glaciers Common data format  X X e 6 X   *  * e20    

HR land cover Common data access portal  X t 7,8 X  c 25       

LST Common metadata standards  e 4 X X X  X  X   

Permafrost Common documentation standards  e 4  t 9 X X X    

Snow Common visualisation & analysis tools   X X      

Biomass (partly) also adopted by C3s Climate Data Store         

Lakes     e20 *   

Ocean colour   X  * X X 

Sea Ice   X * X X 

Sea Level    X X 

SST    X 

Sea State   X 

SSS   
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Table A1: Information on the datasets used for figure 10: versions, DOIs and references. The 1023 

correlations between the SST Niño3.4 region (averaged 5°S to 5°N, 190°E to 240°E) time 1024 

series and the other ECVS’s Niño3.4 time series (and for SM, BA and AOD time series with 1025 

Indonesia (averaged 10°S to 10°N, 100°E to 150°E) are given in the right column. 1026 

ECV Dataset version, time period used, DOI, references: Correlation of 

Niño3.4 SST with 

SST Sea surface temperature 

ESA SST CCI ATSR and/or AVHRR product version v2.1, 

1982-2016 

DOI: n/a 

Merchant et al., 2019 

Niño3.4 SST: 1.00 

SL Sea level height 

SL_cci data v2.0 

1993-2015 

DOI: 10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612  

Legeais et al., 2018 and Quartly et al., 2017 

Niño3.4 SL: 0.87 

 SSS Sea surface salinity 

SEASURFACESALINITY_CCI_DATA v1.8 

2010-2018 

DOI: 10.5285/9ef0ebf847564c2eabe62cac4899ec41 

Boutin et al., 2019 

Niño3.4 SSS: -0.63 

Chlor_a Chlorophyll-alpha 

CCI Chlor_a v3.1 (4km_GEO_PML) 

Niño3.4Chlor_a: -0.68 
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1998-2017 

DOI: n/a 

Sathyendranath et al., 2012 

CFChigh High level cloud fraction 

Cloud_cci AVHRR-PMv3 

1982-2016  

DOI: n/a 

Stengel et al., 2019 

Niño3.4 CFChigh: 0.82 

TCWV Total column water vapour 

HOAPS 4 

1988-2015 

DOI:10.5676/EUM_SAF_CM/HOAPS/V002  

Andersson et al., 2017, data from 2015 as beta version of 

HOAPS 4 

Niño3.4 TCWV: 0.84 

AOD550 Aerosol optical depth at 550 nm  

CCI ATSR-2/AATSR Swansea v4.1 

1997-2011 

https://esgf-

node.llnl.gov/search/obs4mips/obs4mips.SU.ATSR2-

AATSR.od550aer.mon.v20160922 |eridanus.eoc.dlr.de 

Bevan, S., et al., 2012; North, P., et al., 1999; Popp, et al., 

2016 

Indonesia AOD550: 

0.52 

 

Fire Burned area  Indonesia Fire:  0.49 
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FireCCI51 

2001-2017 

DOI: 

dx.doi.org/10.5285/3628cb2fdba443588155e15dee8e5352 

Lizundia et al., 2020 

  

 

SM Soil moisture 

ESA CCI SM merged v04.5 

1991-2018 

DOI: n/a  

Dorigo et al., 2017, Gruber et al., 2019 

Indonesia SM: -0.57 
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Table A2: Snapshot of publications or technical reports (available from ESA CCI program) 1028 

until the submission of this manuscript behind entries on done consistency studies in Table 1029 

3. 1030 

1. Chadburn, S. E., Krinner, G., Porada, P., Bartsch, A., Beer, C., Belelli Marchesini, L., 1031 

Boike, J., Ekici, A., Elberling, B., Friborg, T., Hugelius, G., Johansson, M., Kuhry, P., 1032 

Kutzbach, L., Langer, M., Lund, M., Parmentier, F.-J. W., Peng, S., Van Huissteden, K., 1033 

Wang, T., Westermann, S., Zhu, D., and Burke, E. J. 2017: Carbon stocks and fluxes in 1034 

the high latitudes: using site-level data to evaluate Earth system models. 1035 

Biogeosciences, 14, 5143 - 5169, https://doi.org/10.5194/bg-14-5143-2017.  1036 

2. Reuter, M., M. Buchwitz, M. Hilker, J. Heymann, H. Bovensmann, J.P. Burrows, S. 1037 

Houweling, Y.Y. Liu, R. Nassar, F. Chevallier, P. Ciais, J. Marshall, and M. Reichstein, 1038 

2017: How Much CO2 Is Taken Up by the European Terrestrial Biosphere?. Bull. Amer. 1039 

Meteor. Soc., 98, 665 – 671, https://doi.org/10.1175/BAMS-D-15-00310.1 1040 

3. Carolyn M. Gibson, Laura E. Chasmer, Dan K. Thompson, William L. uinton, Mike D. 1041 

Flannigan & […]David Olefeldt, 2018: Wildfire as a major driver of recent 1042 

permafrost thaw in boreal peatlands. Nature Communications, 9, 3041,  1043 

https://doi.org/10.1038/41467-018-05457-1. 1044 

4. Westermann, S., Peter, M., Langer, M., Schwamborn, G., Schirrmeister, L., 1045 

Etzelmüller, B., Boike, J., 2017: Transient modeling of the ground thermal conditions 1046 

using satellite data in the Lena River Delta, Siberia. The Cryosphere, 11, 1441 - 1463, 1047 

doi:10.5194/tc-11-1441-2017. 1048 

5. Dafflon, B., Oktem, R., Peterson, J., Ulrich, C., Tran, A. P., Romanovsky, V., & Hubbard, 1049 

S. S., 2017: Coincident aboveground and belowground autonomous monitoring to 1050 

quantify covariability in permafrost, soil, and vegetation properties in Arctic tundra. 1051 
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Journal of Geophysical Research: Biogeosciences, 122, 1321 – 1342, 1052 

https://doi.org/10.1002/2016JG003724.  1053 

6. Daiyrov M., C. Narama, T. Yamanokuchi, T. Tadono, A. Kääb, J. Ukita T., 2018: 1054 

Regional geomorphological conditions related to recent changes of glacial lakes in the 1055 

Issyk-Kul basin, northern Tien Shan. Geosciences, 8, 99. 1056 

7. Cable, W.L.; Romanovsky, V.E.; Jorgenson, M.T., 2016: Scaling-up permafrost thermal 1057 

measurements in western Alaska using an ecotype approach. Cryosphere, 10, 2517 – 1058 

2532. 1059 

8. Zhang, N., Yasunari, T., & Ohta, T., 2011: Dynamics of the larch taiga–permafrost 1060 

coupled system in siberia under climate change. Environmental Research Letters, 6, 1061 

024–003, https://doi.org/10.1088/1748-9326/6/2/024003. 1062 

9. Nitze, I., G. Grosse, B. M. Jones, V. E. Romanovsky and J. Boike, 2018: Remote sensing 1063 

quantifies widespread abundance of permafrost region disturbances across the Arctic 1064 

and Subarctic. Nature Communications, 9, 5423. 1065 

10. Klüser L., S. Stapelberg, Aerosol_cci Cloud_cci cloud mask consistency report v1.1. 1066 

DLR / DWD / ESA (briefly summarized in the third example of section 4 in this paper). 1067 

11. Stebel, Kerstin, et al., 2017: Aerosol_cci2 Technical Note on consistency v1.0. DLR / 1068 

ESA. 1069 

12. Adolf, C., Wunderle, S., Colombaroli, D., Weber, H., Gobet, E., Heiri, O., van Leeuwen, 1070 

J. F. N., Bigler, C., Connor, S. E., Gałka, M., La Mantia, T., Makhortykh, S., Svitavská-1071 

Svobodová, H., Vannière, B., and Tinner, W., 2018: The sedimentary and remote-1072 

sensing reflection of biomass burning in Europe. Global Ecology and Biogeography 1073 

27, 199–212. doi: 10.1111/geb.12682. 1074 

13. Cape, J., Coyle, M., and Dumitrean, P., 2012: The atmospheric lifetime of black 1075 

carbon. Atmos. Environ., 59, 256 – 263, doi: 10.1016/j.atmosenv. 2012.05.030. 1076 
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14. Eichler, A., Tinner, W., Brütsch, S., Olivier, S., Papina, T., and Schwikowski, M., 2011: 1077 

An ice-core based history of Siberian forest fires since AD 1250. Quaternary Science 1078 

Reviews, 30, 1027 – 1034. doi: 10.1016/j.quascirev.2011. 1079 

15. Marlon, J. R., Kelly, R., Daniau, A.-L., Vannière, B., Power, M. J., Bartlein, P. J., Higuera, 1080 

P. E., Blarquez, O., Brewer, S., Brücher, T., Feurdean, A., Romera, G. G., Iglesias, V., 1081 

Maezumi, S. Y., Magi, B., Courtney Mustaphi, C. J., and Zhihai, T., 2016: 1082 

Reconstructions of biomass burning from sediment-charcoal records to improve 1083 

data–model comparisons. Biogeosciences, 13, 3225 – 3244, doi: 10.5194/bg-13-3225-1084 

2016. 1085 

16. Pechony, O. and Shindell, D. T., 2010: Driving forces of global wildfires over the past 1086 
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17. Chuvieco, E., Mouillot, F., van der Werf, G.R., San Miguel, J., Tanasse, M., Koutsias, N., 1089 
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satellite Earth observation. Rem. Sens. Environ., 225, 45 - 64. 1092 

18. Chen, Y., Morton, D.C., Andela, N., Giglio, L., & Randerson, J.T., 2016: How much 1093 
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Figure captions 1126 

Figure 1: Temporal coverage of CDRs for ECVs analysed by CCI. Filled bars indicate CDRs 1127 

available in 2019, outlined bars CDRs that are planned within the ongoing phase of the CCI 1128 

program. 1129 

Figure 2: The ECVs covered by ESA CCI CDRs, ordered according to the key Earth system cycle 1130 

(energy, carbon, water) they help characterise. The cycles are inter-linked, and most water 1131 

and carbon cycle ECVs are also relevant to the energy cycle, since energy is stored and 1132 

transported in water and matter, at least on transient timescales. 1133 

Figure 3: Gaps in surface temperature fields (LST and SST from SLSTR on Sentinel-3A on 1134 

05/08/2018 at 10:38 UTC) due to masked clouds (grey), showing the absence of scatter at 1135 

land-sea borders and sampling discontinuities across some land-sea boundaries due to 1136 

different cloud-clearing approaches between LST and SST processing.  1137 

Figure 4: Consistency overview between Aerosol_cci (Swansea University) and Cloud_cci 1138 

(FAME-C) AATSR cloud masks for observations of four selected days in September 2008. No 1139 

cloud/no cloud and cloud/cloud situations are solely analysed as aerosol or clouds in 1140 

Aerosol_cci and Cloud_cci, respectively.  No cloud/cloud situations are wrongly analysed as 1141 

aerosols and clouds, while cloud/no cloud situations are not analysed at all. 1142 

Figure 5: Mean AOD differences at 865 nm between ocean colour MERIS atmospheric 1143 

correction by-product and aerosol ECV product from AATSR in May 2003 when both 1144 

instruments retrieve AOD. 1145 

Figure 6: Top: Time series of monthly mean northern mid-latitude XCO2 (red thick line) based 1146 

on merging individual XCO2 ensemble members (black lines) from GOSAT (since 2009) and 1147 

OCO-2 (since 2014). The time series (2003-2018) begins with one XCO2 product from 1148 

SCIAMACHY/ENVISAT. Bottom: XCO2 difference between ensemble members (black lines) 1149 
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and the multi-sensor / multi-algorithm merged product (red line in top panel). Details see 1150 

Reuter et al., 2020.  1151 

Figure 7: Trend estimates computed after (green) and before (black) homogenisation for all 1152 

long-term TCWV data records available from the G-VAP data archive (Schröder et al., 2018). 1153 

Trend estimates are sorted in ascending order without homogenisation. The grey horizontal 1154 

line marks a trend of 0 kg/m2/year (updated from Schröder et al., 2019). 1155 

Figure 8: The left panel shows the co-variation between a prototype version of the 1156 

stratospheric water vapour CDR H2O (produced within the Water_Vapour_cci) and ERA5 1157 

monthly zonal mean temperatures T at 100 hPa. The right panel shows the correlation 1158 

between the two datasets. 1159 

Figure 9: Trends of monthly averaged significant wave height Hs data sets with the Mann–1160 

Kendall test (thatched areas) from satellite altimetry (left: ALT), and co-located model WW3 1161 

hindcast (right: CoLoc) both given in cm year−1. 1162 

Figure 10: Zonal month-longitude cross sections (averaged 5°S and 5°N) for 150°E to 280°E 1163 

normalized indices of a) sea surface temperature (SST), b) sea level height (SL), c) Sea Surface 1164 

Salinity (SSS), d) chlorophyll-alpha (Chlor_a), e) high level cloud fraction (CFChigh), f) total 1165 

column water vapour (TCWV). All ECVs are plotted for their respective full year availability. 1166 

The black lines in the Hovmöller plots show the Niño3.4 box. g) Time series of Niño3.4 SST 1167 

and Indonesia soil moisture (SM), burned area (Fire), and aerosol optical depth at 550 nm 1168 

(AOD550). Information on the used datasets is provided in Table A1 in the Appendix.  1169 

Accepted for publication in Bulletin of the American Meteorological ociety. DOI S 10.1175/BAMS-D-19-0127.1.

D
ow

nloaded from
 http://journals.am

etsoc.org/bam
s/article-pdf/doi/10.1175/BAM

S-D
-19-0127.1/4961371/bam

sd190127.pdf by guest on 03 July 2020



 59 

Figures 1170 

 1171 

Figure 1: Temporal coverage of CDRs for ECVs analysed by CCI. Filled bars indicate CDRs 1172 

available in 2019, outlined bars CDRs that are planned within the ongoing phase of the CCI 1173 

program.    1174 
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 1175 

Figure 2: The ECVs covered by ESA CCI CDRs, ordered according to the key Earth system cycle 1176 

(energy, carbon, water) they help characterise. The cycles are inter-linked, and most water 1177 

and carbon cycle ECVs are also relevant to the energy cycle, since energy is stored and 1178 

transported in water and matter, at least on transient timescales.     1179 
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 1180 

Figure 3: Gaps in surface temperature fields (LST and SST from SLSTR on Sentinel-3A on 1181 

05/08/2018 at 10:38 UTC) due to masked clouds (grey), showing the absence of scatter at 1182 

land-sea borders and sampling discontinuities across some land-sea boundaries due to 1183 

different cloud-clearing approaches between LST and SST processing.   1184 
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 1185 

Figure 4: Consistency overview between Aerosol_cci (Swansea University) and Cloud_cci 1186 

(FAME-C) AATSR cloud masks for observations of four selected days in September 2008. No 1187 

cloud/no cloud and cloud/cloud situations are solely analysed as aerosol or clouds in 1188 

Aerosol_cci and Cloud_cci, respectively.  No cloud/cloud situations are wrongly analysed as 1189 

aerosols and clouds, while cloud/no cloud situations are not analysed at all. 1190 

  1191 
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 1192 

Figure 5: Mean AOD differences at 865 nm between ocean colour MERIS atmospheric 1193 

correction by-product and aerosol ECV product from AATSR in May 2003 when both 1194 

instruments retrieve AOD. 1195 

  1196 
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 1197 

Figure 6: Top: Time series of monthly mean northern mid-latitude XCO2 (red thick line) based 1198 

on merging individual XCO2 ensemble members (black lines) from GOSAT (since 2009) and 1199 

OCO-2 (since 2014). The time series (2003-2018) begins with one XCO2 product from 1200 

SCIAMACHY/ENVISAT. Bottom: XCO2 difference between ensemble members (black lines) 1201 

and the multi-sensor / multi-algorithm merged product (red line in top panel). Details see 1202 

Reuter et al., 2020.   1203 
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 1204 

Figure 7: Trend estimates computed after (green) and before (black) homogenisation for all 1205 

long-term TCWV data records available from the G-VAP data archive (Schröder et al., 2018). 1206 

Trend estimates are sorted in ascending order without homogenisation. The grey horizontal 1207 

line marks a trend of 0 kg/m2/year (updated from Schröder et al., 2019). 1208 
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1210 
Figure 8: The left panel shows the co-variation between a prototype version of the 1211 

stratospheric water vapour CDR H2O (produced within the Water_Vapour_cci) and ERA5 1212 

monthly zonal mean temperatures T at 100 hPa. The right panel shows the correlation 1213 

between the two datasets.      1214 
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 1215 

Figure 9: Trends of monthly averaged significant wave height Hs data sets with the Mann–1216 

Kendall test (thatched areas) from satellite altimetry (left: ALT), and co-located model WW3 1217 

hindcast (right: CoLoc) both given in cm year−1.  1218 
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1219 
Figure 10: Zonal month-longitude cross sections (averaged 5°S and 5°N) for 150°E to 280°E 1220 

normalized indices of a) sea surface temperature (SST), b) sea level height (SL), c) Sea Surface 1221 

Salinity (SSS, d) chlorophyll-alpha (Chlor_a), e) high level cloud fraction (CFChigh), f) total 1222 

column water vapour (TCWV). All ECVs are plotted for their respective full year availability. 1223 

The black lines in the Hovmöller plots show the Niño3.4 box. g) Time series of Niño3.4 SST 1224 

and Indonesia soil moisture (SM), burned area (Fire), and aerosol optical depth at 550 nm 1225 

(AOD550). Information on the used datasets is provided in Table A1 in the Appendix.  1226 
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