466 research outputs found

    Modulational instability, wave breaking and formation of large scale dipoles in the atmosphere

    Get PDF
    In the present Letter we use the Direct Numerical Simulation (DNS) of the Navier-Stokes equation for a two-phase flow (water and air) to study the dynamics of the modulational instability of free surface waves and its contribution to the interaction between ocean and atmosphere. If the steepness of the initial wave is large enough, we observe a wave breaking and the formation of large scale dipole structures in the air. Because of the multiple steepening and breaking of the waves under unstable wave packets, a train of dipoles is released and propagate in the atmosphere at a height comparable with the wave length. The amount of energy dissipated by the breaker in water and air is considered and, contrary to expectations, we observe that the energy dissipation in air is larger than the one in the water. Possible consequences on the wave modelling and on the exchange of aerosols and gases between air and water are discussed

    The International Workshop on Wave Hindcasting and Forecasting and the Coastal Hazards Symposium

    Full text link
    Following the 13th International Workshop on Wave Hindcasting and Forecasting and 4th Coastal Hazards Symposium in October 2013 in Banff, Canada, a topical collection has appeared in recent issues of Ocean Dynamics. Here we give a brief overview of the history of the conference since its inception in 1986 and of the progress made in the fields of wind-generated ocean waves and the modelling of coastal hazards before we summarize the main results of the papers that have appeared in the topical collection

    Predicting the breaking onset of surface water waves

    Get PDF
    Why do ocean waves break? Understanding this important and obvious property of the ocean surface has been elusive for decades. This paper investigates causes which lead deep-water two-dimensional initially monochromatic waves to break. Individual wave steepness is found to be the single parameter which determines whether the wave will break immediately, never break or take a finite number of wave lengths to break. The breaking will occur once the wave reaches the Stokes limiting steepness. The breaking probability and the location of breaking onset can be predicted, properties of incipient breakers measured. Potential applications to field conditions are discussed

    Computer-Mediated Communications Research in Russia

    Get PDF
    The development of modern information technologies leads to the great amount of external tools of human activity. These complicated semiotic systems mediate the higher level of mental functions. The investigation of mediated forms of behavior belongs to the Russian tradition in psychological research. New communicative means essentially transform the operational structureofhumanactivity,itsorientationbasisandmotivationalregulation. Toillustratethisposition,wepresentcumulative results of our investigation

    Semi-empirical dissipation source functions for ocean waves: Part I, definition, calibration and validation

    Full text link
    New parameterizations for the spectra dissipation of wind-generated waves are proposed. The rates of dissipation have no predetermined spectral shapes and are functions of the wave spectrum and wind speed and direction, in a way consistent with observation of wave breaking and swell dissipation properties. Namely, the swell dissipation is nonlinear and proportional to the swell steepness, and dissipation due to wave breaking is non-zero only when a non-dimensional spectrum exceeds the threshold at which waves are observed to start breaking. An additional source of short wave dissipation due to long wave breaking is introduced to represent the dissipation of short waves due to longer breaking waves. Several degrees of freedom are introduced in the wave breaking and the wind-wave generation term of Janssen (J. Phys. Oceanogr. 1991). These parameterizations are combined and calibrated with the Discrete Interaction Approximation of Hasselmann et al. (J. Phys. Oceangr. 1985) for the nonlinear interactions. Parameters are adjusted to reproduce observed shapes of directional wave spectra, and the variability of spectral moments with wind speed and wave height. The wave energy balance is verified in a wide range of conditions and scales, from gentle swells to major hurricanes, from the global ocean to coastal settings. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Some systematic defects are still present, but the parameterizations yield the best overall results to date. Perspectives for further improvement are also given.Comment: revised version for Journal of Physical Oceanograph

    Wave attenuation and dispersion due to floating ice covers

    Full text link
    Experiments investigating the attenuation and dispersion of surface waves in a variety of ice covers are performed using a refrigerated wave flume. The ice conditions tested in the experiments cover naturally occurring combinations of continuous, fragmented, pancake and grease ice. Attenuation rates are shown to be a function of ice thickness, wave frequency, and the general rigidity of the ice cover. Dispersion changes were minor except for large wavelength increases when continuous covers were tested. Results are verified and compared with existing literature to show the extended range of investigation in terms of incident wave frequency and ice conditions
    corecore