35 research outputs found

    UVES/VLT high resolution absorption spectroscopy of the GRB080330 afterglow: a study of the GRB host galaxy and intervening absorbers

    Full text link
    We study the Gamma Ray Burst (GRB) environment and intervening absorbers by analyzing the optical absorption features produced by gas surrounding the GRB or along its line of sight. We analyzed high resolution spectroscopic observations (R=40000, S/N=3 - 6) of the optical afterglow of GRB080330, taken with UVES at the VLT ~ 1.5 hours after the GRB trigger. The spectrum illustrates the complexity of the ISM of the GRB host galaxy at z = 1.51 which has at least four components in the main absorption system. We detect strong FeII, SiII, and NiII excited absorption lines associated with the bluemost component only. In addition to the host galaxy, at least two more absorbers lying along the line of sight to the afterglow have been detected in the redshift range 0.8 < z < 1.1, each exhibiting MgII absorption. For the bluemost component in the host galaxy, we derive information about its distance from the site of the GRB explosion. We do so by assuming that the excited absorption lines are produced by indirect UV pumping, and compare the data with a time dependent photo-excitation code. The distance of this component is found to be 280+40-50 pc, which is lower than found for other GRBs (1 - 6 kpc). We identify two additional MgII absorbers, one of them with a rest frame equivalent width larger than 1A. The distance between the GRB and the absorber measured in this paper confirms that the power of the GRB radiation can influence the conditions of the interstellar medium up to a distance of at least several hundred pc. For the intervening absorbers, we confirm the trend that on average one strong intervening system is found per afterglow, as has been noted in studies exhibiting an excess of strong MgII absorbers along GRB sightlines compared to quasars.Comment: 8 Pages, 7 ps figures, A&A in pres

    On the Incidence of Strong MgII Absorbers Along GRB Sightlines

    Full text link
    We report on a survey for strong (rest equivalent width W_r >= 1A), intervening MgII systems along the sightlines to long-duration gamma-ray bursts (GRBs). The GRB spectra which comprise the survey have a heterogeneous mix of resolution and wavelength coverage, but we implement a strict, uniform set of search criteria to derive a well-defined statistical sample. We identify 15 strong MgII absorbers along 14 GRB sightlines (nearly every sightline exhibits at least one absorber) with spectra covering a total pathlength Delta z = 15.5 at a mean redshift = 1.1. In contrast, the predicted incidence of such absorber systems along the same path length to quasar sightlines is only 3.8. The roughly four times higher incidence along GRB sightlines is inconsistent with a statistical fluctuation at greater than 99.9% c.l. Several effects could explain the result: (i) dust within the MgII absorbers obscures faint quasars giving a lower observed incidence along quasar sightlines; (ii) the gas is intrinsic to the GRB event; (iii) the GRB are gravitationally lensed by these absorbers. We present strong arguments against the first two effects and also consider lensing to be an unlikely explanation. The results suggest that at least one of our fundamental beliefs on absorption line research is flawed.Comment: 5 pages, 3 figures. Submitted to ApJ

    Non variability of intervening absorbers observed in the UVES spectra of the "naked-eye" GRB080319

    Full text link
    The aim of this paper is to investigate the properties of the intervening absorbers lying along the line of sight of Gamma-Ray Burst (GRB) 080319B through the analysis of its optical absorption features. To this purpose, we analyze a multi-epoch, high resolution spectroscopic observations (R=40000, corresponding to 7.5 km/s) of the optical afterglow of GRB080319B (z=0.937), taken with UVES at the VLT. Thanks to the rapid response mode (RRM), we observed the afterglow just 8m:30s after the GRB onset when the magnitude was R ~ 12. This allowed us to obtain the best signal-to-noise, high resolution spectrum of a GRB afterglow ever (S/N per resolution element ~ 50). Two further RRM and target of opportunity observations were obtained starting 1.0 and 2.4 hours after the event, respectively. Four MgII absorption systems lying along the line of sight to the afterglow have been detected in the redshift range 0.5 < z < 0.8, most of them showing a complex structure featuring several components. Absorptions due to FeII, MgI and MnII are also present; they appear in four, two and one intervening absorbers, respectively. One out of four systems show a MgII2796 rest frame equivalent width larger than 1A. This confirms the excess of strong MgII absorbers compared to quasars, with dn/dz = 0.9, ~ 4 times larger than the one observed along quasar lines of sight. In addition, the analysis of multi-epoch, high-resolution spectra allowed us to exclude a significant variability in the column density of the single components of each absorber. Combining this result with estimates of the size of the emitting region, we can reject the hypothesis that the difference between GRB and QSO MgII absorbers is due to a different size of the emitting regions.Comment: 10 pages, 15 ps figures, submitted to MNRA

    The X-ray absorbing column density of a complete sample of bright Swift Gamma-Ray Bursts

    Full text link
    A complete sample of bright Swift Gamma-ray Bursts (GRBs) has been recently selected by Salvaterra et al. (2011). The sample has a high level of completeness in redshift (91%). We derive here the intrinsic absorbing X-ray column densities of these GRBs making use of the Swift X-ray Telescope data. This distribution has a mean value of log(NH/cm-2)=21.7+-0.5. This value is consistent with the distribution of the column densities derived from the total sample of GRBs with redshift. We find a mild increase of the intrinsic column density with redshift. This can be interpreted as due to the contribution of intervening systems along the line of sight. Making use of the spectral index connecting optical and X-ray fluxes at 11 hr (beta_OX), we investigate the relation of the intrinsic column density and the GRB `darkness'. We find that there is a very tight correlation between dark GRBs and high X-ray column densities. This clearly indicates that the dark GRBs are formed in a metal-rich environment where dust must be present.Comment: MNRAS, 6 pages, 3 figures, 1 tabl

    GRBs as Cosmological Probes - Cosmic Chemical Evolution

    Get PDF
    Long-duration gamma-ray bursts (GRBs) are associated with the death of metal-poor massive stars. Even though they are highly transient events very hard to localize, they are so bright that they can be detected in the most difficult environments. GRB observations are unveiling a surprising view of the chemical state of the distant universe (redshifts z > 2). Contrary to what is expected for a high-z metal-poor star, the neutral interstellar medium (ISM) around GRBs is not metal poor (metallicities vary from ~1/10 solar at z = 6.3 to about solar at z = 2) and is enriched with dust (90-99% of iron is in solid form). If these metallicities are combined with those measured in the warm ISM of GRB host galaxies at z < 1, a redshift evolution is observed. Such an evolution predicts that the stellar masses of the hosts are in the range M* = 10^(8.6-9.8) Msun. This prediction makes use of the mass-metallicity relation (and its redshift evolution) observed in normal star-forming galaxies. Independent measurements coming from the optical-NIR photometry of GRB hosts indicate the same range of stellar masses, with a typical value similar to that of the Large Magellanic Cloud. This newly detected population of intermediate-mass galaxies is very hard to find at high redshift using conventional astronomy. However, it offers a compelling and relatively inexpensive opportunity to explore galaxy formation and cosmic chemical evolution beyond known borders, from the primordial universe to the present.Comment: Review article to be published in New Journal of Physics (http://www.njp.org), Focus Issue on Gamma Ray Burst

    The distribution of equivalent widths in long GRB afterglow spectra

    Full text link
    The extreme brightness of gamma-ray burst (GRB) afterglows and their simple spectral shape make them ideal beacons to study the interstellar medium of their host galaxies through absorption line spectroscopy. Using 69 low-resolution GRB afterglow spectra, we conduct a study of the rest-frame equivalent width (EW) distribution of features with an average rest-frame EW larger than 0.5 A. To compare an individual GRB with the sample, we develop EW diagrams as a graphical tool, and we give a catalogue with diagrams for the 69 spectra. We introduce a line strength parameter (LSP) that allows us to quantify the strength of the absorption features as compared to the sample by a single number. Using the distributions of EWs of single-species features, we derive the distribution of column densities by a curve of growth (CoG) fit. We find correlations between the LSP and the extinction of the GRB, the UV brightness of the host galaxies and the neutral hydrogen column density. However, we see no significant evolution of the LSP with the redshift. There is a weak correlation between the ionisation of the absorbers and the energy of the GRB, indicating that, either the GRB event is responsible for part of the ionisation, or that galaxies with high-ionisation media produce more energetic GRBs. Spectral features in GRB spectra are, on average, 2.5 times stronger than those seen in QSO intervening damped Lyman-alpha (DLA) systems and slightly more ionised. In particular we find larger excess in the EW of CIV1549 relative to QSO DLAs, which could be related to an excess of Wolf-Rayet stars in the environments of GRBs. From the CoG fitting we obtain an average number of components in the absorption features of GRBs of 6.00(-1.25,+1.00). The most extreme ionisation ratios in our sample are found for GRBs with low neutral hydrogen column density, which could be related to ionisation by the GRB emission.Comment: 37 pages, 31 figures, 15 tables. Accepted for publication in Astonomy and Astrophysic

    The color excess of quasars with intervening DLA systems- Analysis of the SDSS data release five

    Full text link
    We analyzed the spectroscopic and photometric database of the 5th data release of the Sloan Digital Sky Survey (SDSS) to search for evidence of the quasar reddening produced by dust embedded in intervening damped Ly alpha (DLA) systems. From a list of 5164 quasars in the interval of emission redshift 2.25 /= 4, we built up an "absorption sample" of 248 QSOs with a single DLA system in the interval of absorption redshift 2.2 < z_a </= 3.5 and a "pool" of 1959 control QSOs without DLA systems or strong metal systems. For each QSO of the absorption sample we extracted from the pool a subset of control QSOs that are closest in redshift and magnitude. The mean color of this subset was used as a zero point to measure the "deviation from the mean color" of individual DLA-QSOs, Delta_i. The colors were measured using "BEST" ugriz SDSS imaging data. The mean color excess of the absorption sample, , was estimated by averaging the individual color deviations Delta_i. We find = 27 +/- 9 x 10**(-3) mag and = 54 +/- 12 x 10**(-3) mag. These values are representative of the reddening of DLA systems at z_a ~ 2.7 in SDSS QSOs with limiting magnitude r =/~ 20.2. The detection of the mean reddening is confirmed by several statistical tests. Analysis of the results suggests an origin of the reddening in dust embedded in the DLA systems, with an SMC-type extinction curve. By converting the reddening into rest-frame extinction, we derive a mean dust-to-gas ratio ~ 2 to 4 x 10**(-23) mag cm^2. This value is ~ -1.25 dex lower than the mean dust-to-gas ratio of the Milky Way, in line with the lower level of metallicity in the present DLA sample.Comment: Accepted for publication on Astronomy & Astrophysics, 17 pages, 10 figure

    A Cross-Correlation Analysis of Mg II Absorption Line Systems and Luminous Red Galaxies from the SDSS DR5

    Full text link
    We analyze the cross-correlation of 2,705 unambiguously intervening Mg II (2796,2803A) quasar absorption line systems with 1,495,604 luminous red galaxies (LRGs) from the Fifth Data Release of the Sloan Digital Sky Survey within the redshift range 0.36<=z<=0.8. We confirm with high precision a previously reported weak anti-correlation of equivalent width and dark matter halo mass, measuring the average masses to be log M_h(M_[solar]h^-1)=11.29 [+0.36,-0.62] and log M_h(M_[solar]h^-1)=12.70 [+0.53,-1.16] for systems with W[2796A]>=1.4A and 0.8A<=W[2796A]<1.4A, respectively. Additionally, we investigate the significance of a number of potential sources of bias inherent in absorber-LRG cross-correlation measurements, including absorber velocity distributions and the weak lensing of background quasars, which we determine is capable of producing a 20-30% bias in angular cross-correlation measurements on scales less than 2'. We measure the Mg II - LRG cross-correlation for 719 absorption systems with v<60,000 km s^-1 in the quasar rest frame and find that these associated absorbers typically reside in dark matter haloes that are ~10-100 times more massive than those hosting unambiguously intervening Mg II absorbers. Furthermore, we find evidence for evolution of the redshift number density, dN/dz, with 2-sigma significance for the strongest (W>2.0A) absorbers in the DR5 sample. This width-dependent dN/dz evolution does not significantly affect the recovered equivalent width-halo mass anti-correlation and adds to existing evidence that the strongest Mg II absorption systems are correlated with an evolving population of field galaxies at z<0.8, while the non-evolving dN/dz of the weakest absorbers more closely resembles that of the LRG population.Comment: 21 pages, 19 figures; Published in Astrophysical Journa

    Ubiquitous outflows in DEEP2 spectra of star-forming galaxies at z=1.4

    Full text link
    Galactic winds are a prime suspect for the metal enrichment of the intergalactic medium and may have a strong influence on the chemical evolution of galaxies and the nature of QSO absorption line systems. We use a sample of 1406 galaxy spectra at z~1.4 from the DEEP2 redshift survey to show that blueshifted Mg II 2796, 2803 A absorption is ubiquitous in starforming galaxies at this epoch. This is the first detection of frequent outflowing galactic winds at z~1. The presence and depth of absorption are independent of AGN spectral signatures or galaxy morphology; major mergers are not a prerequisite for driving a galactic wind from massive galaxies. Outflows are found in coadded spectra of galaxies spanning a range of 30x in stellar mass and 10x in star formation rate (SFR), calibrated from K-band and from MIPS IR fluxes. The outflows have column densities of order N_H ~ 10^20 cm^-2 and characteristic velocities of ~ 300-500 km/sec, with absorption seen out to 1000 km/sec in the most massive, highest SFR galaxies. The velocities suggest that the outflowing gas can escape into the IGM and that massive galaxies can produce cosmologically and chemically significant outflows. Both the Mg II equivalent width and the outflow velocity are larger for galaxies of higher stellar mass and SFR, with V_wind ~ SFR^0.3, similar to the scaling in low redshift IR-luminous galaxies. The high frequency of outflows in the star-forming galaxy population at z~1 indicates that galactic winds occur in the progenitors of massive spirals as well as those of ellipticals. The increase of outflow velocity with mass and SFR constrains theoretical models of galaxy evolution that include feedback from galactic winds, and may favor momentum-driven models for the wind physics.Comment: Accepted by ApJ. 25 pages, 17 figures. Revised to add discussions of intervening absorbers and AGN-driven outflows; conclusions unchange

    A faint optical flash in dust-obscured GRB 080603A - implications for GRB prompt emission mechanisms

    Get PDF
    We report the detection of a faint optical flash by the 2-m Faulkes Telescope North simultaneously with the second of two prompt gamma-ray pulses in INTEGRAL gamma-ray burst (GRB) 080603A, beginning at t_rest = 37 s after the onset of the GRB. This optical flash appears to be distinct from the subsequent emerging afterglow emission, for which we present comprehensive broadband radio to X-ray light curves to 13 days post-burst and rigorously test the standard fireball model. The intrinsic extinction toward GRB 080603A is high (A_V,z = 0.8 mag), and the well-sampled X-ray-to-near-infrared spectral energy distribution is interesting in requiring an LMC2 extinction profile, in contrast to the majority of GRBs. Comparison of the gamma-ray and extinction-corrected optical flux densities of the flash rules out an inverse-Compton origin for the prompt gamma-rays; instead, we suggest that the optical flash could originate from the inhomogeneity of the relativistic flow. In this scenario, a large velocity irregularity in the flow produces the prompt gamma-rays, followed by a milder internal shock at a larger radius that would cause the optical flash. Flat gamma-ray spectra, roughly F propto nu^-0.1, are observed in many GRBs. If the flat spectrum extends down to the optical band in GRB 080603A, the optical flare could be explained as the low-energy tail of the gamma-ray emission. If this is indeed the case, it provides an important clue to understanding the nature of the emission process in the prompt phase of GRBs and highlights the importance of deep (R> 20 mag), rapid follow-up observations capable of detecting faint, prompt optical emission.Comment: 22 pages, 11 figures, accepted to MNRA
    corecore