31 research outputs found

    Endogenous suppression of WNT signalling in human embryonic stem cells leads to low differentiation propensity towards definitive endoderm

    Get PDF
    Low differentiation propensity towards a targeted lineage can significantly hamper the utility of individual human pluripotent stem cell (hPSC) lines in biomedical applications. Here, we use monolayer and micropatterned cell cultures, as well as transcriptomic profiling, to investigate how variability in signalling pathway activity between human embryonic stem cell lines affects their differentiation efficiency towards definitive endoderm (DE). We show that endogenous suppression of WNT signalling in hPSCs at the onset of differentiation prevents the switch from self-renewal to DE specification. Gene expression profiling reveals that this inefficient switch is reflected in NANOG expression dynamics. Importantly, we demonstrate that higher WNT stimulation or inhibition of the PI3K/AKT signalling can overcome the DE commitment blockage. Our findings highlight that redirection of the activity of Activin/NODAL pathway by WNT signalling towards mediating DE fate specification is a vulnerable spot, as disruption of this process can result in poor hPSC specification towards DE

    MiR-378a-3p Is Critical for Burkitt Lymphoma Cell Growth

    Get PDF
    Simple Summary MicroRNAs (miRNAs) are small RNAs that regulate expression of specific target genes. We observed elevated levels of miR-378a-3p in Burkitt lymphoma (BL) and studied its role in the pathogenesis of BL. Inhibition of miR-378a-3p reduced growth of BL cells, confirming its significance in BL. Identification of BL specific target genes of miR-378a-3p revealed four candidates. For two of them, MNT and IRAK4, miR-378a-dependent regulation was confirmed at the protein level. Overexpression of MNT and IRAK4 in BL cell lines resulted in a similar effect as observed upon miR-378a-3p inhibition, suggesting their involvement in the growth regulatory role of miR-378a-3p. MicroRNAs (miRNAs) are small RNA molecules with important gene regulatory roles in normal and pathophysiological cellular processes. Burkitt lymphoma (BL) is an MYC-driven lymphoma of germinal center B (GC-B) cell origin. To gain further knowledge on the role of miRNAs in the pathogenesis of BL, we performed small RNA sequencing in BL cell lines and normal GC-B cells. This revealed 26 miRNAs with significantly different expression levels. For five miRNAs, the differential expression pattern was confirmed in primary BL tissues compared to GC-B cells. MiR-378a-3p was upregulated in BL, and its inhibition reduced the growth of multiple BL cell lines. RNA immunoprecipitation of Argonaute 2 followed by microarray analysis (Ago2-RIP-Chip) upon inhibition and ectopic overexpression of miR-378a-3p revealed 63 and 20 putative miR-378a-3p targets, respectively. Effective targeting by miR-378a-3p was confirmed by luciferase reporter assays for MAX Network Transcriptional Repressor (MNT), Forkhead Box P1 (FOXP1), Interleukin 1 Receptor Associated Kinase 4 (IRAK4), and lncRNA Just Proximal To XIST (JPX), and by Western blot for IRAK4 and MNT. Overexpression of IRAK4 and MNT phenocopied the effect of miR-378a-3p inhibition. In summary, we identified miR-378a-3p as a miRNA with an oncogenic role in BL and identified IRAK4 and MNT as miR-378a-3p target genes that are involved in its growth regulatory role

    Contribution of primary motor cortex to compensatory balance reactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rapid compensatory arm reactions represent important response strategies following an unexpected loss of balance. While it has been assumed that early corrective actions arise largely from sub-cortical networks, recent findings have prompted speculation about the potential role of cortical involvement. To test the idea that cortical motor regions are involved in early compensatory arm reactions, we used continuous theta burst stimulation (cTBS) to temporarily suppress the hand area of primary motor cortex (M1) in participants prior to evoking upper limb balance reactions in response to whole body perturbation. We hypothesized that following cTBS to the M1 hand area evoked EMG responses in the stimulated hand would be diminished. To isolate balance reactions to the upper limb participants were seated in an elevated tilt-chair while holding a stable handle with both hands. The chair was held vertical by a magnet and was triggered to fall backward unpredictably. To regain balance, participants used the handle to restore upright stability as quickly as possible with both hands. Muscle activity was recorded from proximal and distal muscles of both upper limbs.</p> <p>Results</p> <p>Our results revealed an impact of cTBS on the amplitude of the EMG responses in the stimulated hand muscles often manifest as inhibition in the stimulated hand. The change in EMG amplitude was specific to the target hand muscles and occasionally their homologous pairs on the non-stimulated hand with no consistent effects on the remaining more proximal arm muscles.</p> <p>Conclusions</p> <p>Present findings offer support for cortical contributions to the control of early compensatory arm reactions following whole-body perturbation.</p

    Federated Identity Management for Research Collaborations

    Get PDF
    This white-paper expresses common requirements of Research Communities seeking to leverage Identity Federation for Authentication and Authorisation. Recommendations are made to Stakeholders to guide the future evolution of Federated Identity Management in a direction that better satisfies research use cases. The authors represent research communities, Research Services, Infrastructures, Identity Federations and Interfederations, with a joint motivation to ease collaboration for distributed researchers. The content has been edited collaboratively by the Federated Identity Management for Research (FIM4R) Community, with input sought at conferences and meetings in Europe, Asia and North America

    Recommendations for enterovirus diagnostics and characterisation within and beyond Europe.

    Get PDF
    Enteroviruses (EV) can cause severe neurological and respiratory infections, and occasionally lead to devastating outbreaks as previously demonstrated with EV-A71 and EV-D68 in Europe. However, these infections are still often underdiagnosed and EV typing data is not currently collected at European level. In order to improve EV diagnostics, collate data on severe EV infections and monitor the circulation of EV types, we have established European non-polio enterovirus network (ENPEN). First task of this cross-border network has been to ensure prompt and adequate diagnosis of these infections in Europe, and hence we present recommendations for non-polio EV detection and typing based on the consensus view of this multidisciplinary team including experts from over 20 European countries. We recommend that respiratory and stool samples in addition to cerebrospinal fluid (CSF) and blood samples are submitted for EV testing from patients with suspected neurological infections. This is vital since viruses like EV-D68 are rarely detectable in CSF or stool samples. Furthermore, reverse transcriptase PCR (RT-PCR) targeting the 5'noncoding regions (5'NCR) should be used for diagnosis of EVs due to their sensitivity, specificity and short turnaround time. Sequencing of the VP1 capsid protein gene is recommended for EV typing; EV typing cannot be based on the 5'NCR sequences due to frequent recombination events and should not rely on virus isolation. Effective and standardized laboratory diagnostics and characterisation of circulating virus strains are the first step towards effective and continuous surveillance activities, which in turn will be used to provide better estimation on EV disease burden

    Molecular Epidemiology and Evolutionary Trajectory of Emerging Echovirus 30, Europe

    Get PDF
    In 2018, an upsurge in echovirus 30 (E30) infections was reported in Europe. We conducted a large-scale epidemiologic and evolutionary study of 1,329 E30 strains collected in 22 countries in Europe during 2016-2018. Most E30 cases affected persons 0-4 years of age (29%) and 25-34 years of age (27%). Sequences were divided into 6 genetic clades (G1-G6). Most (53%) sequences belonged to G1, followed by G6 (23%), G2 (17%), G4 (4%), G3 (0.3%), and G5 (0.2%). Each clade encompassed unique individual recombinant forms; G1 and G4 displayed >= 2 unique recombinant forms. Rapid turnover of new clades and recombinant forms occurred over time. Clades G1 and G6 dominated in 2018, suggesting the E30 upsurge was caused by emergence of 2 distinct clades circulating in Europe. Investigation into the mechanisms behind the rapid turnover of E30 is crucial for clarifying the epidemiology and evolution of these enterovirus infections.Peer reviewe

    Status Update and Interim Results from the Asymptomatic Carotid Surgery Trial-2 (ACST-2)

    Get PDF
    Objectives: ACST-2 is currently the largest trial ever conducted to compare carotid artery stenting (CAS) with carotid endarterectomy (CEA) in patients with severe asymptomatic carotid stenosis requiring revascularization. Methods: Patients are entered into ACST-2 when revascularization is felt to be clearly indicated, when CEA and CAS are both possible, but where there is substantial uncertainty as to which is most appropriate. Trial surgeons and interventionalists are expected to use their usual techniques and CE-approved devices. We report baseline characteristics and blinded combined interim results for 30-day mortality and major morbidity for 986 patients in the ongoing trial up to September 2012. Results: A total of 986 patients (687 men, 299 women), mean age 68.7 years (SD ± 8.1) were randomized equally to CEA or CAS. Most (96%) had ipsilateral stenosis of 70-99% (median 80%) with contralateral stenoses of 50-99% in 30% and contralateral occlusion in 8%. Patients were on appropriate medical treatment. For 691 patients undergoing intervention with at least 1-month follow-up and Rankin scoring at 6 months for any stroke, the overall serious cardiovascular event rate of periprocedural (within 30 days) disabling stroke, fatal myocardial infarction, and death at 30 days was 1.0%. Conclusions: Early ACST-2 results suggest contemporary carotid intervention for asymptomatic stenosis has a low risk of serious morbidity and mortality, on par with other recent trials. The trial continues to recruit, to monitor periprocedural events and all types of stroke, aiming to randomize up to 5,000 patients to determine any differential outcomes between interventions. Clinical trial: ISRCTN21144362. © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved

    Synthetic gene circuits and cellular decision-making in human pluripotent stem cells

    No full text
    Precise manipulation of human cell fate is a long-standing goal in biological engineering; it underpins efforts to advance new cellular therapeutics, and to develop disease models for fundamental research. Human pluripotent stem cells (hPSC) are emerging as the cells of choice for many of these applications. Currently, most advanced methods for manipulation of hPSC fate involve recapitulating developmental processes by mimicking stem cell niche-associated signals. Alternately, advances in engineering synthetic decision-making gene circuits provide an approach in which cell fate is directly controlled at the gene expression level. Here, we make the case that integrating these two engineering approaches represents an exciting opportunity to advance our fundamental understanding of cell fate control, and to accelerate new engineering strategies to manipulate cellular behavior for therapy

    Precision multidimensional assay for high-throughput microRNA drug discovery

    No full text
    Development of drug discovery assays that combine high content with throughput is challenging. Information-processing gene networks can address this challenge by integrating multiple potential targets of drug candidates’ activities into a small number of informative readouts, reporting simultaneously on specific and non-specific effects. Here we show a family of networks implementing this concept in a cell-based drug discovery assay for miRNA drug targets. The networks comprise multiple modules reporting on specific effects towards an intended miRNA target, together with non-specific effects on gene expression, off-target miRNAs and RNA interference pathway. We validate the assays using known perturbations of on- and off-target miRNAs, and evaluate an ∌700 compound library in an automated screen with a follow-up on specific and non-specific hits. We further customize and validate assays for additional drug targets and non-specific inputs. Our study offers a novel framework for precision drug discovery assays applicable to diverse target families.ISSN:2041-172
    corecore