29 research outputs found

    Saturday Morning Parent and Child Education (PACE)

    Get PDF

    The role of wind waves on salt marsh morphodynamics

    Full text link
    The stability and survival of salt marshes is typically linked to the competing influences of sea-level rise, subsidence, and sediment accumulation and erosion. However, consideration must also be made for wind waves that regulate the erosion of salt marsh shorelines and resuspend sediments in bordering tidal flats thus providing material for marsh accretion. This thesis examines the mechanisms in which wind waves affect marsh morphology, the mechanisms of salt marsh boundary erosion, in addition to linking the processes responsible for sediment mobilization between tidal flats and adjacent salt marshes. Sediment concentration within an open-coast marsh creek along the Louisiana chenier plain is shown to be related to the local wave climate and channel velocity. Calculations of sediment fluxes during ebb and flood tides indicates that while large volumes of sediment are mobilized into the marsh when wind waves are present, only a small portion is stored during each tidal cycle. In the coastal lagoon setting of Hog Island Bay, Virginia, marsh shoreline erosion rates were estimated from direct surveys and through analysis of aerial photographs. Erosion rates averaged 1.3 m/yr, similar to the 50-year historical average determined from previous work at the same location. Based on a calibrated numerical model for wind waves, the average erosion rate was linked to the energy of the waves attacking the marsh boundary. Additionally, results suggest that the effect of large waves forming during storms on erosion rates is negligible. Variations in erosion rates were linked to shoreline sinuosity (a proxy used to describe the result of wave concentration through erosive gullies), sediment characteristics, faunal activity, and marsh elevation. The culmination of the work leads to the hypothesis that waves have two opposite effects on salt marshes. On one hand they erode marsh boundaries thus reducing marsh area; on the other hand they mobilize large volumes of sediments in nearby tidal flats which may facilitate marsh accretion thus contrasting sea-level rise. In conclusion, wind waves destabilize marshes along the horizontal direction despite their potential vertical stability

    Lateral Marsh Edge Erosion as a Source of Sediments for Vertical Marsh Accretion

    Get PDF
    With sea level rise accelerating and sediment inputs to the coast declining worldwide, there is concern that tidal wetlands will drown. To better understand this concern, sources of sediment contributing to marsh elevation gain were computed for Plum Island Sound estuary, MA, USA. We quantified input of sediment from rivers and erosion of marsh edges. Maintaining elevation relative to the recent sea level rise rate of 2.8 mm yr−1 requires input of 32,299 MT yr−1 of sediment. The input from watersheds is only 3,210 MT yr−1. Marsh edge erosion, based on a comparison of 2005 and 2011 LiDAR data, provides 10,032 MT yr−1. This level of erosion is met by \u3c0.1% of total marsh area eroded annually. Mass balance suggests that 19,070 MT yr−1 should be of tidal flat or oceanic origin. The estuarine distribution of 14C and 13C isotopes of suspended particulate organic carbon confirms the resuspension of ancient marsh peat from marsh edge erosion, and the vertical distribution of 14C‐humin material in marsh sediment is indicative of the deposition of ancient organic carbon on the marsh platform. High resuspension rates in the estuarine water column are sufficient to meet marsh accretionary needs. Marsh edge erosion provides an important fraction of the material needed for marsh accretion. Because of limited sediment supply and sea level rise, the marsh platform maintains elevation at the expense of total marsh area

    An evolving research agenda for human–coastal systems

    Full text link

    Coupled Wave Energy and Erosion Dynamics along a Salt Marsh Boundary, Hog Island Bay, Virginia, USA

    No full text
    The relationship between lateral erosion of salt marshes and wind waves is studied in Hog Island Bay, Virginia USA, with high-resolution field measurements and aerial photographs. Marsh retreat is compared to wave climate calculated in the bay using the spectral wave-model Simulating Waves Nearshore (SWAN). We confirm the existence of a linear relationship between long-term salt marsh erosion and wave energy, and show that wave power can serve as a good proxy for average salt-marsh erosion rates. At each site, erosion rates are consistent across several temporal scales, ranging from months to decades, and are strongly related to wave power. On the contrary, erosion rates vary in space and weakly depend on the spatial distribution of wave energy. We ascribe this variability to spatial variations in geotechnical, biological, and morphological marsh attributes. Our detailed field measurements indicate that at a small spatial scale (tens of meters), a positive feedback between salt marsh geometry and wave action causes erosion rates to increase with boundary sinuosity. However, at the scale of the entire marsh boundary (hundreds of meters), this relationship is reversed: those sites that are more rapidly eroding have a marsh boundary which is significantly smoother than the marsh boundary of sheltered and slowly eroding marshes
    corecore