293 research outputs found

    Rollover, drowning, and discontinuous retreat: Distinct modes of barrier response to sea-level rise arising from a simple morphodynamic model

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 119 (2014): 779–801, doi:10.1002/2013JF002941.We construct a simple morphodynamic model to investigate the long-term dynamic evolution of a coastal barrier system experiencing sea-level rise. Using a simplified barrier geometry, the model includes a dynamic shoreface profile that can be out of equilibrium and explicitly treats barrier sediment overwash as a flux. With barrier behavior primarily controlled by the maximum potential overwash flux and the rate of shoreface response, the modeled barrier system demonstrates four primary behaviors: height drowning, width drowning, constant landward retreat, and a periodic retreat. Height drowning occurs when overwash fluxes are insufficient to maintain the landward migration rate required to keep pace with sea-level rise. On the other hand, width drowning occurs when the shoreface response rate is insufficient to maintain the barrier geometry during overwash-driven landward migration. During periodic barrier retreat, the barrier experiences oscillating periods of rapid overwash followed by periods of relative stability as the shoreface resteepens. This periodic retreat, which occurs even with a constant sea-level rise rate, arises when overwash rates and shoreface response rates are large and of similar magnitude. We explore the occurrence of these behaviors across a wide range of parameter values and find that in addition to the maximum overwash flux and the shoreface response rate, barrier response can be particularly sensitive to the sea-level rise rate and back-barrier lagoon slope. Overall, our findings contrast with previous research which has primarily associated complex barrier behavior with changes in external forcing such as sea-level rise rate, sediment supply, or back-barrier geometry.This research has been supported by the National Science Foundation grant #CNH-0815875, the Strategic Environment Research and Development Program, and the Coastal Ocean Institute of the Woods Hole Oceanographic Institution.2014-10-0

    Rollover, drowning, and discontinuous retreat: Distinct modes of barrier response to sea-level rise arising from a simple morphodynamic model

    Get PDF
    We construct a simple morphodynamic model to investigate the long-term dynamic evolution of a coastal barrier system experiencing sea-level rise. Using a simplified barrier geometry, the model includes a dynamic shoreface profile that can be out of equilibrium and explicitly treats barrier sediment overwash as a flux. With barrier behavior primarily controlled by the maximum potential overwash flux and the rate of shoreface response, the modeled barrier system demonstrates four primary behaviors: height drowning, width drowning, constant landward retreat, and a periodic retreat. Height drowning occurs when overwash fluxes are insufficient to maintain the landward migration rate required to keep pace with sea-level rise. On the other hand, width drowning occurs when the shoreface response rate is insufficient to maintain the barrier geometry during overwash-driven landward migration. During periodic barrier retreat, the barrier experiences oscillating periods of rapid overwash followed by periods of relative stability as the shoreface resteepens. This periodic retreat, which occurs evenwith a constant sea-level rise rate, arises when overwash rates and shoreface response rates are large and of similar magnitude. We explore the occurrence of these behaviors across a wide range of parameter values and find that in addition to themaximum overwash flux and the shoreface response rate, barrier response can be particularly sensitive to the sea-level rise rate and back-barrier lagoon slope. Overall, our findings contrast with previous research which has primarily associated complex barrier behavior with changes in external forcing such as sea-level rise rate, sediment supply, or back-barrier geometry

    A geomorphic enthalpy method: Description and application to the evolution of fluvial-deltas under sea-level cycles

    Get PDF
    Fluvial deltas are composites of two primary sedimentary environments: a depositional fluvial region and an offshore region. The fluvial region is defined by two geomorphic moving boundaries: an alluvial-bedrock transition (ABT), which separates the sediment prism from the non-erodible bedrock basement, and the shoreline (SH), where the delta meets the ocean. The trajectories of these boundaries in time and space define the evolution of the shape of the sedimentary prism, and are often used as stratigraphic indicators, particularly in seismic studies, of changes in relative sea level and the identification of stratigraphic sequences. In order to better understand the relative role of sea-level variations, sediment supply, and basin geometry on the evolution of the ABT and SH, we develop a forward stratigraphic model that accounts for curvature changes of the fluvial surface and treats the SH and ABT as moving boundaries (i.e., internal boundaries that are not known a priori and their location must be calculated as part of the solution to the overall problem). This forward model extends a numerical technique from heat transfer (i.e., enthalpy method), previously applied to the evolution of sedimentary basins, to account for sea-level variations, including eustatic sea-level cycles. In general, model results demonstrate the importance of the dynamics of the fluvial surface on the system response under a large range of input parameter values. Specifically, model results suggest that time lags in the ABT response during sea-level cycles can result in geologically long-lived river incision in the upper and mid portions of the fluvial surface during sea-level rise. These results suggest that the relationship between the coastal onlap configuration of strata and relative changes in sea level is complex, and therefore not necessarily a good indicator of contemporaneous sea-level changes

    Expressive speech synthesis using sentiment embeddings

    Get PDF
    In this paper we present a DNN based speech synthesis system trained on an audiobook including sentiment features predicted by the Stanford sentiment parser. The baseline system uses DNN to predict acoustic parameters based on conventional linguistic features, as they have been used in statistical parametric speech synthesis. The predicted parameters are transformed into speech using a conventional high-quality vocoder. In this paper, the conventional linguistic features are enriched using sentiment features. Different sentiment representations have been considered, combining sentiment probabilities with hierarchical distance and context. After preliminary analysis a listening experiment is conducted, where participants evaluate the different systems. The results show the usefulness of the proposed features and reveal differences between expert and non-expert TTS user.Peer ReviewedPostprint (published version
    • …
    corecore