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Lateral Marsh Edge Erosion as a Source of Sediments
for Vertical Marsh Accretion
Charles S. Hopkinson1 , James T. Morris2 , Sergio Fagherazzi3 , Wilfred M. Wollheim4 , and
Peter A. Raymond5

1Department of Marine Sciences, University of Georgia, Athens, GA, USA, 2Belle Baruch Institute for Marine and Coastal
Studies, University of South Carolina, Columbia, SC, USA, 3Department of Earth and Environment, Boston University, Boston,
MA, USA, 4Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA, 5School
of Forestry and Environmental Studies, Yale University, New Haven, CT, USA

Abstract With sea level rise accelerating and sediment inputs to the coast declining worldwide, there is
concern that tidal wetlands will drown. To better understand this concern, sources of sediment
contributing to marsh elevation gain were computed for Plum Island Sound estuary, MA, USA. We quantified
input of sediment from rivers and erosion of marsh edges. Maintaining elevation relative to the recent sea
level rise rate of 2.8 mm yr�1 requires input of 32,299 MT yr�1 of sediment. The input from watersheds is only
3,210 MT yr�1. Marsh edge erosion, based on a comparison of 2005 and 2011 LiDAR data, provides
10,032 MT yr�1. This level of erosion is met by <0.1% of total marsh area eroded annually. Mass balance
suggests that 19,070 MT yr�1 should be of tidal flat or oceanic origin. The estuarine distribution of 14C and 13C
isotopes of suspended particulate organic carbon confirms the resuspension of ancient marsh peat from
marsh edge erosion, and the vertical distribution of 14C-humin material in marsh sediment is indicative of the
deposition of ancient organic carbon on the marsh platform. High resuspension rates in the estuarine
water column are sufficient to meet marsh accretionary needs. Marsh edge erosion provides an important
fraction of thematerial needed for marsh accretion. Because of limited sediment supply and sea level rise, the
marsh platform maintains elevation at the expense of total marsh area.

Plain Language Summary Tidal marshes in the Plum Island Sound estuary have been gaining
elevation over the past 100 years at about the same rate as sea level rise (SLR), but there is concern that
they will drown and disappear if rates of SLR increase substantially due to CO2 emissions and climate change.
What are the sediment sources enabling elevation gain? Rivers were not the primary source, providing less
than 10% of elevation gain needs. Marsh edge erosion is much more important—providing over 30% of
needs. We estimate that the remainder comes from the ocean or erosion of tidal flats. If the ocean is a major
source, these marshes might be able to maintain elevation throughout the 21st century even if SLR greatly
accelerates. However, if erosion of tidal flats is the primary source of sediments, the future outlook is less
favorable because the more tidal flat erosion increases, the more edge erosion will also increase. The net
result will be a loss of marsh area in this system. The dynamics we found for Plum Island Sound are likely to be
occurring globally, as declining sediment inputs from rivers, and increasing rates of SLR due to climate
change are worldwide phenomenon. Loss of marshes will have a major impact on the resilience of coastal
communities landward of the marshes and the productivity of most coastal fisheries.

1. Introduction

The tidal wetlands we know today are for the most part the product of geomorphic processes that played out
over the past 2,000 to 4,000 years. Formation of tidal wetlands as we know them today was largely tied to the
stabilization of shorelines and barrier islands with the onset of the late Holocene deceleration of sea level rise
(SLR, eustatic SLR, not including vertical landmovements, such as subsidence, which can be regionally impor-
tant in determining the relative SLR; see Rovere et al., 2016) to rates as low as 0.5 mm yr�1 (Donnelly, 2006;
Engelhart & Horton, 2012; Hein et al., 2012; Redfield, 1967a). At extremely low rates of SLR, bay infilling with
sediment enabled tidal wetlands to prograde into open water areas, to build vertically through accretion, and
to transgress uplands (Fagherazzi et al., 2012; Redfield, 1967b, 1972). In the United States, increased soil ero-
sion from land clearing for agriculture following European colonization led to increased sediment flux from
watersheds, contributing to further tidal wetland expansion (Kirwan et al., 2011; Mattheus et al., 2009;
Pasternack et al., 2001; Pavich et al., 1985; Trimble, 1977). Tidal wetland expansion following deforestation
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Key Points:
• Sediment input from rivers
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only 39% of the sediment required
for marshes to maintain elevation
relative to SLR

• The marsh platform has been able to
maintain its relative elevation at the
expense of total marsh area

• Sediment inputs from the ocean or
from erosion of tidal flats are likely an
important factor in the mineral
sediment budget of the system and
together must contribute
19,070 MT yr

�1
in order for the marsh

to accrete at its current rate of
2.8 mm yr

�1
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has been documented worldwide for marshes and mangroves (Swales & Bentley, 2008). There are limited
accounts of present-day tidal wetland expansion, however, and they seem to be limited to locations with
continued high riverine sediment loads, such as the Mekong and Yangtze deltas, and where there has been
a major human action taken, such as in the Mississippi River delta following Atchafalaya River capture of a
major portion of the Mississippi River (Blum & Roberts, 2012).

There is increasing concern for the survival of tidal wetlands because of the acceleration of SLR and the decrease
in sediment delivery to the coast (Weston, 2013). Rates of SLR have increased over the past 150 years (Donnelly
et al., 2004; Rahmstorf et al., 2012) to rates that are now about 3.2 mm yr�1 globally. Sea level is projected to
further increase by 2100 at rates not seen since themaximummeltwater pulse about 9,000 years ago as a result
of climate change brought about by anthropogenic CO2 emissions—up to 2 m by 2100 (Donnelly et al., 2004;
Sweet et al., 2017; Walsh et al., 2014). Improved landmanagement (e.g., contour plowing), agricultural abandon-
ment and reforestation, and river damming have reduced sediment delivery worldwide substantially (Milliman &
Syvitski, 1992; Syvitski et al., 2005). In North America it has been estimated that sediment delivery to the coast
decreased about 50% in the 20th century (Meade & Trimble, 1974; Warrick et al., 2013; Weston, 2013).
Reductions in sediment availability and delivery and rising sea level has been linked to tidal wetland loss globally
(Reed, 1995), with examples in theMississippi River delta (Blum & Roberts, 2009; Day et al., 2011), Choptank River
and Blackwater Creek marshes in the Chesapeake Bay (Ganju et al., 2015), and Venice Lagoon (Day et al., 1998).

Tidal wetlands provide critical ecosystem services tomankind, including protection from coastal storms and carbon
dioxide sequestration (Barbier et al., 2011; Costanza et al., 1997).We already seemanagement activities taking shape
to reduce erosion of marsh shorelines through the installation of armored shorelines and living shorelines (Gittman
et al., 2015). Yet we do not know the impact and long-term effects of shoreline erosion reductions on estuarine
sediment budgets and the sediment supply required for tidal wetlands to maintain elevation relative to SLR.

There are two aspects of tidal wetland survival that are impacted by reductions in sediment availability and
SLR (incorporating rise in sea surface height and changes in land elevation, such as subsidence)—vertical ele-
vation gain and maintenance of areal extent. Relative SLR can be even greater when augmented by land sub-
sidence, thereby making tidal wetland survival even more precarious. It is generally accepted that there is a
positive relationship between maintaining elevation relative to increasing rates of SLR and the availability of
suspended sediment (Day et al., 2011; Fagherazzi et al., 2012; Kirwan et al., 2010; Mudd, 2011). There are
strong stabilizing feedbacks between the depth of tidal inundation, marsh biomass, and sediment trapping
efficiency (Morris, 2016; Morris et al., 2002) such that as long as inundation depth does not exceed a critical
threshold, marshes will respond to increasing sea level by increasing their productivity and aboveground bio-
mass, which leads to enhanced sediment trapping efficiency, increased sedimentation on the marsh surface,
and increased gain in marsh elevation. Mariotti and Fagherazzi (2013) and Fagherazzi et al. (2013) have pro-
posed that the stability of the marsh boundary (and hence marsh area) is also strongly linked to sediment
availability and the rate of SLR. Marsh boundaries are inherently unstable, and even in the absence of SLR,
marsh boundaries will retreat when sediment erosion is higher than the input of sediment to the system.
Only a complete sediment budget can evaluate both vertical gain and maintenance of areal extent that
determine the fate of intertidal wetlands in an estuarine system (Fagherazzi et al., 2013; Marcus & Kearney,
1991), yet few sediment budgets focused on wetland stability exist (French et al., 2008; Ganju et al., 2017).

Here we develop a sediment budget of marsh elevation gain for the Plum Island Sound salt marshes in order
to assess the long-term survival of the extensive tidal marshes currently present. In this system we have evi-
dence that marshes are maintaining elevation relative to SLR, but we also find substantial rates of erosion
along the marsh boundaries of Plum Island Sound and therefore declining areal extent of marshes. Our
research questions are as follows: How widespread is edge erosion, and what is its significance relative to riv-
erine sediment sources in contributing tomarsh elevation gain? If these two sources do not provide sufficient
sediment to sustain marsh elevation gain, what are the other likely sources?

2. Materials and Methods
2.1. Description of the Area

The Plum Island Soundmarsh-dominated estuary is located in northeasternMassachusetts, USA, adjacent to the
Gulf of Maine and the Parker and Ipswich River watersheds (Figure 1). The combined watersheds are about
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600 km2 in size and experiencing significant suburbanization. Agriculture
has beendeclining since its peak in themid-1800s (Claessens et al., 2006).
Precipitation is uniform throughout the year, but runoff is highly seasonal
ranging from about 110 to 8 mm mo�1 in March and September. The
watershed is of very low relief and punctuated with wetlands (21%)
and the river has hundreds of dams, natural (beaver ponds), and man-
made (Claessens et al., 2006). These wetlands and dams influence
streamflow dynamics and particulate matter entering the estuary.

The Plum Island Sound estuary is a typical but large marsh-dominated
estuary in New England. The estuary is about 60 km2 in size with tidal
wetlands making up about 40 km2 of the total area. The main axis of
the estuary is about 24 km long, with the Parker River entering at the
head and the Ipswich River debouching near the mouth. It is a macro-
tidal system in the cold water Acadian biogeographic province. The
estuary stabilized into its current barrier island/inlet configuration
about 2,500 to 3,500 years ago, once the rate of SLR had decreased
to about 1 mm yr�1 (Hein et al., 2012). From about 1,000 years ago until
the 19th century, the SLR rate was about 0.5 mm yr�1 (Donnelly, 2006;
Hein et al., 2012). The average rate of SLR increased to about
2.8 mm yr�1 in the 20th century. Mean tidal range is 2.5 m. Tidal fluxes
dominate over river flow (Hein et al., 2012; Vallino & Hopkinson, 1998),
and the estuary is ebb-tide dominated with an ebb tidal delta.

Plum Island Sound estuary wetlands are distributed between mean sea
level and 2 m (Millette et al., 2010; Morris, Sundberg, et al., 2013). There

is a gradient in tidal wetlands along the estuary ranging from oligohaline marshes dominated by Typha spp.
and Spartina patens in the upper 5 km of the Parker river, to brackish and saline marshes further downstream
that are dominated by S. patens and Spartina alterniflora. The final 10 km of the estuary consists of a 1-km
wide broad sound that narrows only near the mouth. The ratio of marsh area to estuarine water area varies
along the length of the estuary from >10:1 to about 1:1 adjacent to Plum Island Sound. As is typical for the
New England region, the tidal marshes can be characterized as having high and low marsh platforms dis-
sected by numerous tidal channels and mosquito-control ditches. The high marsh platform (75% of the
marsh area; elevation about 1.4 m above NAVD88 (~1.38 m above mean sea level) is dominated by
S. patens in areas showing a gradient in elevation and short form S. alterniflora on nearly flat pannes that exhi-
bit poor drainage (Millette et al., 2010). Ponds are numerous within many pannes (Wilson et al., 2014). The low
marsh platform dominated by tall form S. alterniflora comprises only about 10% of the marsh. The transition
elevation to the high marsh platform is at about 1.0 m. MHW and MHHW elevations are at about 1.1 and
1.28 m (Millette et al., 2010).

2.2. General Approach

Weuse amass balance approach to determine the relative importance of various sediment sources that enable
the marsh platform to maintain elevation relative to SLR (Figure 2). The estuary is divided into three zones of
roughly equivalent length along the Parker River and one for Plum Island Sound (Figure 1). Each zone has three
components: (1) the water column, which connects all elements within the system including external inputs;
(2) subtidal and intertidal sediments, which we simply label tidal flats; and (3) the marsh. There are four poten-
tial sources of sediment, two internal and two external. The internal sources include edge erosion of themarsh
shoreline and erosion of creek and bay bottoms and intertidal flats. The external sources include rivers and the
ocean. The only component for which we quantify sediment standing stock is the sediment suspended in the
water column, and we assume that this stock is roughly at equilibrium over annual periods and longer.

The overall equation describing the sediment mass balance is

Marsh Sediment Accretion ¼ Riverþ Edge Erosionþ Net Ocean Exchangeþ Net Tidal Flat Erosionð Þ; (1)

where marsh accretion is seen as a sink of sediment, and rivers, edge erosion, and the ocean or tidal flats are
seen as potential sources. Marsh sediment accretion, river, and edge erosion are quantified in a manner

Figure 1. Plum Island Sound estuary highlighting the four zones along the
24-km axis where a sediment balance was constructed. The most significant
river inputs to the system are identified. The colors correspond to elevation and
land cover: white, uplands or barrier island >2-m NAVD88; green, intertidal
marshes dominated by Spartina patens between 0.8 and 2-m NAVD88; yellow,
intertidal wetlands dominated by Spartina alterniflora between 0 and 0.8-m
NAVD88; blue, open water and intertidal flats<0 NAVD88. The ocean adjacent to
the estuary is the Gulf of Maine. The coordinates at the mouth of the estuary
are 42°41.4890N 70°45.5550W. North is straight up the image.
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described below. The net ocean exchange and tidal flat erosion is the unknown for which we solve. We assign
the shortfall to either the ocean or tidal flats, as we are unable with this single equation to solve for more than
one unknown at a time. All sediment stocks or fluxes are reported in units of metric tonnes of sediment per
year (MT yr�1). Our budget is calculated for a mean annual interval. While we budget gains and losses of
marsh sediment due to surface accretion and edge erosion, we do not track total marsh stocks. Nor do we
track sediment stores associated with tidal creek bottoms and intertidal flats, even though these are the
proximal source and sink of sediment resuspended by tidal currents. We apply this approach separately for
both mineral and organic sediments, fully cognizant of, but ignoring, the potential importance of
undecomposed roots and rhizome accumulation in contributing to marsh elevation gain, but not to
surface accretion.

2.3. LiDAR Data

The Plum Island Ecosystems–Long-term ecological research (PIE-LTER) study area was flown by the National
Center for Airborne Laser Mapping with LiDAR on two occasions at times of minimal vegetation height (after
winter icing, plant scouring and vegetation compression, and prior to spring growth), in spring of 2005 and
2011 and within 90 min of predicted low tide. Details on LiDAR orthorectification are described by Millette
et al. (2010). The data from both flights were projected on the horizontal datum of UTM NAD83 (2007),
UTM zone 19, and a vertical datum of NAVD88 computed from the GEOID09. The final products were con-
verted to 1.0 × 1.0 m raster digital elevation models (DEMs) in grid format.

2.4. Marsh Sediment Accretion

Volumes, areas, standing stocks, and fluxes of materials used to calculate a sediment budget for the Plum
Island Sound estuary wetlands were obtained from previous reports as well as new measures in this study.
The marshes along the estuary are distributed between mean sea level and 2 m (Millette et al., 2010;
Morris, Sundberg, et al., 2013). ArcMap 10.2.2 was used to calculate the surface area of marsh in each section
using the surface volume tool querying the 2005 DEM as to area between 0 and 2 m in elevation. We used
previous studies of Plum Island Sound estuarine hydrodynamics and metabolism for estimates of water
volumes along the length of the estuary (see Vallino & Hopkinson, 1998; Vallino et al., 2005).

Themass of sediment required tomaintainmarsh elevation relative to SLR was assessed in two ways. First, we
simply multiplied the annual increase in sea level × sediment bulk density × surface area of marsh in each
box. Wilson et al. (2014) analyzed marker horizon and surface elevation table (SET) data maintained by the

Figure 2. Boxmodel used to examine sediment budget of the Plum Island Sound, marsh-dominated estuary. The estuary is
divided into four sections, each with open water (estuarine tidal creeks and bays), intertidal flats, creek bottoms, and
adjacent intertidal marsh. Sediment enters the system via rivers (River-1 refers to the Parker River and other ungauged
stream inputs to the upper 5 km of the estuary. R-2 refers to the Mill and Little Rivers that are also ungauged and that enter
in the lower estuary. R-3 refers to the Ipswich River and other ungauged stream inputs including the Rowley River).
Edge erosion (E) refers to the sediment entering each section of the river via erosion of marsh creek banks. (a) Surface
accretion is the mass of sediment coming from flood tide waters that sustains marsh elevation gain. Resuspension (R) and
settling (S) refer to solids that exchange between the water column and creek bottoms in association with variations in
tidal current velocities. Ocean refers to the sediment that enters or exits from the ocean. All terms including the standing
stock of total suspended solids in the water column of each estuarine section were measured explicitly in this study except
for exchanges with tidal flats and the ocean, which were calculated by mass balance.
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National Science Foundation-supported, PIE-LTER for the past 15 years and concluded that the marshes
throughout the system have been increasing in elevation at about the same rate as historic records of SLR
(National Oceanic and Atmospheric Administration, 2.8 mm per year since 1920). The increase in sea level
at this site is primarily driven by the increase in sea surface height. Subsidence as determined by repeated
measures of the heights of dozens of SETs over the past decade is not discernible. Mineral and organic matter
contributions to elevation gain were determined from specific measures of sediment bulk density, organic
carbon density, mineral content, and organic matter content (PIE-LTER database; see also Hopkinson et al.,
2012; Morris et al., 2016; Schmidt et al., 1998).

We also calculated inorganic and organic sediment inputs from the simultaneous solution of two equations.
The organic input can be met from a combination of in situ accumulation of undecomposed marsh plant
roots and rhizomes and particulate organic carbon (POC) from estuarine tidal waters. The first constraint is
that the proportions of organic (x) and inorganic (y) inputs (MT/yr) must be consistent with the observed
organic matter fraction of marsh sediments of 0.3, so that

1. x/(x + y) = 0.3

The second constraint is that the total volume (V) required annually must be met by the sum of individual
inorganic and organic inputs (Morris et al., 2016), given by

2. V = x/k1 + y/k2
where the constants k1 and k2 are the self-packing densities of organic and inorganic sediment or 0.085 and
1.99 MT/m3 (Morris et al., 2016; Schmidt et al., 1998; PIE-LTER database), respectively. ArcMap 10.2.2 was used
to calculate the surface area of marsh in each section using the surface volume tool querying the 2005 DEM as
to area between 0 and 2 m in elevation. We used previous studies of Plum Island Sound estuarine hydrody-
namics and metabolism for estimates of water volumes along the length of the estuary (see Vallino &
Hopkinson, 1998; Vallino et al., 2005).

2.5. Distribution and Mass of Total Suspended Solids Along the Estuary

The spatial distribution of total suspended solids and other substances has been monitored by the PIE-LTER
during spring, when river flow is highest, and fall, when river flow is lowest, for the past 15 years. We used the
median of all spring and fall data over this interval as the average mass of material suspended in the water
column for the four estuarine sections. This is the material that is potentially deposited on the marsh during
high tide inundation. We acknowledge the potential importance of resuspension during storms, which is not
accounted for by our sampling approach, and discuss this further in the discussion. Water samples from 11
stations spanning the full salinity gradient and length of the estuary are sampled, returned to the laboratory,
and filtered through precombusted (450 °C) and preweighed GF/F filters (Whatman brand with nominal 0.7-μ
m pore size) until clogged. Filters were dried to constant weight at 60 °C, then weighed to determine mass of
total suspended solids or to determine C content by Perkin Elmer CHN elemental analyzer after acidification.
A subset of filters was ashed at 450 °C then reweighed to determine percent loss on ignition and, by differ-
ence, percent organic matter and mineral content. Chlorophyll a (chl-a) was determined from a second filter
using acetone extraction, accounting for phaeophyton (Strickland & Parsons, 1972). From these measures, we
estimated the mass of total suspended solids in each section of the river and the relative importance of algae,
other particulate organic matter (POM), and mineral matter. We converted POC to POM assuming 50% C. We
converted chl-a to carbon and then to POM assuming a 60:1 chl-a to C ratio.

2.6. Estimation of Total Suspended Solids Resuspended During a Single Tidal Cycle

We estimated the tidal current-induced resuspension of sediment particles relative to that at slack water from
the calculated median absolute deviation (MAD) of our total suspended solids measures collected during
spring and fall sampling cruises over a 15-year period. As sampling was not conducted at times of maximum
and minimum total suspended solid concentrations during a tidal cycle, we had to estimate the max-min dif-
ference to derive resuspension, assuming that the minimum concentration is the background sediment con-
centration always present. Our field sampling was conducted irrespective of tidal stage or storm/wind
conditions. It is our assumption that the variability we observed in spring and fall over long time intervals
(15 years) mostly reflects differences in when we sampled relative to tidal stage, with high values coming
from sampling during maximum tidal currents and low values from sampling near slack water. Thus, the
amount of total solids resuspended during each tidal cycle is 2 times the MAD (difference between
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[median + MAD] and [median-MAD], e.g., median of 10 mg/L and MAD
of 4, gives resuspension of 8 mg/L from [10 + 4] � [10–4]). To estimate
resuspension on an annual basis we accounted for the number of tidal
cycles in a year (~730).

2.7. River Loading of Particulate Matter

We used total suspended sediment (TSS) concentration data collected
by the PIE-LTER and U.S. Geological Survey (USGS) discharge data for
the Parker and Ipswich Rivers (USGS ID = 01101000 and 01102000,
respectively) to calculate mean annual loading of suspended solids into
the Plum Island Sound estuary. We scaled USGS discharge data to cover
ungauged portions of the watersheds using scaling factors determined
in Vallino and Hopkinson (1998). Flow-weighted mean TSS was esti-
mated for each watershed using just under 9 years of monthly data col-
lected between the end of 2006 and 2014 (n = 98 samples). Data were
collected over 3 orders of magnitude variation in river discharge, and a
range of base flow and stormflows, including both rising and falling
limbs of storm hydrographs. Monthly sampling was assumed to pro-
vide adequate estimates of longer term TSS concentrations in these riv-
ers because discharge is not flashy due to the relatively high wetland
abundance that store and release stormflows. Dissolved organic carbon
(DOC) floc was similarly estimated from total DOC inputs from the
watersheds, assuming 10% of DOC in freshwater flocculates as sedi-

ments. Inputs were distributed to the respective boxes (Figure 2) as appropriate.

2.8. Marsh Edge Erosion Estimation

Erosion at the marsh-water edge was assessed by analyzing the three-dimensional change described by the
difference between the 2005 and 2011 DEMs of the marsh edge (Figures 3 and 4). Based on the hypsometric
profile of the cumulative distribution of marsh area versus marsh elevation for the entire marsh (Figure 5 in
Millette et al., 2010), we chose the 1-m contour as the best demarcation point for the “edge” of the marsh—
still on the marsh, yet not down the marsh ramp, where elevation rapidly drops. When erosion of the marsh
edge occurs, the marsh ramp continues to exist, but it moves inland across the marsh platform. It is themarsh
platform that loses area and sediment volume. We quantify edge erosion by examining change in a 10-wide
zone (buffer) behind the 1-m contour (up across the marsh platform) as defined in 2005. Erosion occurs when
the edge advances across the platform buffer, ultimately causing a decrease in total marsh area and an
increase in open water area.

We used ArcMap 10.2.2. to develop a buffer shapefile and to calculate the volume of sediment lost during the
2005–2011 interval. The shapefile was based on the 2005 DEM and included only the 10-m wide buffer
greater than or equal to the 1.0-m elevation contour. This contour follows the shorelines of all water bodies,
including the Sound, first through fourth-order tidal creeks, andmost mosquito ditches andmarsh ponds. We
also created shape files for each of the four zones along the estuary (Figure 1): 0–5, 5–10, 10–15, and 15–
24 km. These shape files were used to quantify edge erosion, and the areas of marsh (0–2 m elevation)
and water (<0 m elevation) for each zone. Having four zones enabled us to compare and contrast reaches
with and without riverine inputs and to contrast the sound from the tidal river. As mentioned earlier there
is also a great range in marsh area to water areas from the top zone to the bottom (Sound) zone.

The sequence of steps we employed in creating a buffer shape file is (1) convert all elevations to integers
starting with our 2005 DEM; (2) reclassify all elevations into the binary 0 or 1 depending on whether elevation
was<1 m or ≥1 m to define the marsh platform; (3) convert from raster to polygon in order to define 3 zones
as shape files—marsh only, water only, and water plus 10-m buffer adjacent to water and of elevation greater
than 1 m; (4) remove water from the buffer, leaving only the buffer as a shapefile; and (5) extract the buffer
from the 2005 and 2011 DEMs.

We calculated edge erosion using the ArcMap tool, functional surface/surface area and volume, querying the
2011 DEM (just the buffer) as to the area and volume below 1m in elevation. Remember that the entire buffer

Figure 3. An example from along the northwestern edge of Plum Island Sound
showing the delineation of the 10-m buffer. Note that the buffer is readily
apparent along mosquito ditches, first, second, third, and fourth-order tidal
creeks, Plum Island Sound, and marsh ponds. The blue rectangular box deline-
ates the zone where we show selective results of marsh edge erosion during the
2005–2011 interval.
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was ≥1 m in elevation in 2005 and the area <1 m was by definition 0. Any surface lower than 1 m in 2011
represented erosion that occurred between 2011 and 2005.

2.9. Carbon Dating of Estuarine Suspended Particulate Organic Matter

We 14C-dated the suspended POC of estuarine water to determine the presence of eroded marsh peat in the
water column. If eroded marsh peat is an important source of sediment for the marsh platform, it has to be
resuspended into the water column prior to its being deposited on the marsh. Samples were collected along
the length of the estuary 4 times over 3 years, during times of high and low river discharge. Estuary water was
filtered through ashed (450 °C) 2.5-cm GF/F (nominal pore size, 0.7 μm) filters using a 100-mL glass syringe.
Filters were frozen until preparation. In the laboratory, filters were acid-fumed to sparge off any inorganic C
and then dried and sent to the National Association of Oceanic Mass Spectrometry (NOSAMS0 facility in
Woods Hole for accelerator mass spectrometric analysis of Δ14C and δ13C). All reported Δ14C values were cor-
rected for fractionation using the Δ13C values of the samples, according to the conventions of Stuiver and
Pollach (1977). The potential contribution of eroded ancient marsh peat to the distribution of suspended
POC along the estuary was calculated with a simple end-member mixing model of Δ14C using the average

Figure 4. Example of edge erosion for three transects (dark green dotted lines on map) adjacent to the NW shoreline of
Plum Island Sound (see Figures 2 and 3). The map to the left shows the 10-m buffer delineated from the 2005 digital
elevation model. The green band along the right side of the buffer represents area that had eroded by 2011. Cross sections
of marsh elevation along each of the transects are shown in graphs A–C.
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Δ14C value measured at 67.5 cm depth in a core taken from the high marsh platform as described below
(Raymond and Hopkinson (2003).

2.10. 14C Dating of Marsh Organic Matter

We also 14C-dated the depth distribution of organic carbon in Plum Island marsh sediment to check whether
any of the ancient marsh organic carbon that erodes frommarsh edges is returned to themarsh platform dur-
ing tidal inundation. The presence of ancient organic carbon in near surface sediments could be indicative of
this process. We analyzed just the humin fraction of sediment organic matter. This is the organic carbon frac-
tion bound by clay minerals that often contaminates bulk sediment in archeological studies causing its age to
deviate substantially from the charcoal, wood, or plant macrofossils of interest (McGeehin et al., 2001). We
assume that the presence of ancient humin carbon near the marsh surface is an indication that it is derived
from tidal waters with suspended ancient humin-POC. As the vast majority of organic matter near the marsh
surface is expected to be live and recently dead roots and rhizomes of marsh plants, by sampling the age of
humin material, we minimize the contribution of organic matter recently produced in situ. As the humin is
likely clay bound, the presence of ancient humin is likely indicative of mineral matter also eroded from the
marsh edge.

We analyzed a single core collected in 2006 from the highmarsh adjacent to the Rowley River near where the
PIE-LTER project monitors marsh productivity. The core was subsampled at depths of surface, 2.5, 22.5, 42.5,
and 67.5 cm. Subsamples were passed through a 63-μm screen after removal of any visible Spartina macro-
organic matter and then treated with acid-alkali-acid washes following the procedure in McGeehin et al.
(2001) to remove all but the humin fraction (the classical humic and fulvic acid fractions are alkali soluble
and hence removed). The humin fraction for each layer was isolated, dried, and analyzed for 14C at the
NSF-Arizona Mass Spectrometry Facility at the University of Arizona. Mass balance was not determined so
we do not know the percentage humin relative to bulk organic content.

2.11. Mass Balance Estimation of Sediment Shortfall in Meeting Marsh Accretionary Needs

Sediment required to support measured rates of marsh elevation gain (marsh sediment accretion) was
balanced against measured inputs from the watershed (River) and measured rates of marsh edge erosion
(equation (1)) to determine the accretion shortfall. As equation (1) indicates, two potential sediment sources
could make up for the shortfall: (1) net ocean exchange and (2) net tidal flat and bay bottom erosion. We
examined each separately, assuming all or nothing, even though it is likely a combination of the two occurs.
Thus, our estimates of these inputs are likely high. On the other hand, if not all river or edge erosion inputs are
retained within the system and deposited on themarsh platform, our mass balance estimation of the shortfall
will be underestimated.

Mass balance was also used in the net tidal flat erosion scenario to assess sediment settling following resus-
pension. The amount settling back to tidal flat and bay bottoms is the difference between the amount resus-
pended and the amount required to meet the marsh sediment accretion shortfall: resuspension minus net
tidal flat erosion = sediment settling. The difference would result in water body deepening, if the shortfall
was not made up by oceanic inputs.

3. Results
3.1. Marsh Sediment Accretion

Based on analysis of over twenty 16 × 50 cm cores collected along the estuary with varying distances from
tidal creeks, we found no significant spatial patterns for marsh sediment bulk density or the relative mineral
versus organic matter composition of sediment throughout the estuary (Schmidt et al., 1998, PIE-LTER data-
base). There was considerable variability, however. Bulk density averaged 0.272 mg cm�3 (standard error
[SE] = 0.022), and mineral and organic fractions of sediment dry weight were 0.7 and 0.3 g g�1, respectively.
These values are similar to those reported in Morris et al. (2016) and follow closely the power function that
described the relation between bulk density and organic content for over 5,000 sediment samples from 33
tidal marshes and mangroves distributed around the United States.

Plum Island marshes require a total particulate or solids input equivalent to 32,300 MT yr�1 in order to main-
tain elevation relative to an average SLR rate of 2.8 mm yr�1 (Table 1). The distribution along the length of the
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estuary is skewed highly toward the marshes adjacent to Plum Island Sound because 75% of all marshes are
found in this region. By contrast, only 1,110 and 1,292 MT yr�1 are required to meet needs in the upper two
zones of the estuary. Mineral inputs required to meet marsh elevation changes range from 778 to
16,928 MT yr�1 along the length of the estuary. Organic matter inputs to meet marsh changes ranged
from 332 and 7,253 MT yr�1.

3.2. River Loading of Particulate Matter

The annual loading of TSS from the watersheds varied over an order of magnitude between 2007 and 2014,
from<300 to>5,000 MT yr�1. The 8-year average was 2,656 MT yr�1 (SE = 561). This wide range over time is
primarily due to the extreme range in discharge during the same time period (226–608× 106 m3 yr�1). The
average discharge during the 8-year record was approximately 10% higher than the USGS 80-year average.
POM loading (a subset of particulate matter) averaged 823 MT yr�1 (SE = 172) and varied as much over the 8-
year record as total suspended solids. We also include an estimate of organic carbon that flocculates when in
contact with the high salinity estuarine waters, assuming that 10% of total DOC loading flocculates
(Sholkovitz, 1976). Dissolved Fe, Mn, and Al also flocculate with the humics, but at insignificant mass relative
to organic matter itself. We estimate that organic matter that flocculates from river water contributed an
additional 554 MT yr�1 (SE = 48) to the particulate matter input to the estuary. DOC input was much less vari-
able than particulate loading. Total particulate loading averaged 3,210 MT y�1, of which 43%was organic and
57% was mineral matter.

3.3. Marsh Edge Erosion

Erosion of the marsh edge was readily detected over the 2005–2011 LIDAR defined interval (Figure 4 and
Table 2). Measures along the northwestern shoreline of Plum Island Sound (shown in Figure 4) agree favor-
ably with direct measures along a 1-km stretch of shoreline between 2008 and 2013 (Leonardi &
Fagherazzi, 2014, 2015). The area of marsh land lost in each region of the estuary ranged from 3,146 to
142,832 m2 over the 6-year interval (Table 2). While significant in terms of mass, this level of erosion repre-
sents a small fraction of total marsh area in each region—losses ranged from 0.03% of the mid-Parker section
to 0.12% of the lower-Parker region. Only 0.07% was lost annually from the marsh boundaries in the Plum
Island Sound region of the estuary.

Table 1
Mass of Mineral and Organic Matter Needed for Marshes to Maintain Elevation Relative to a Sea Level Rise Rate of 2.8 mm yr�1

for the Four Zones Along the Plum Island Sound Estuary

Estuarine zone Area (km2) Total mass (MT yr�1) Mineral (MT yr�1) Organic (MT yr�1) % Mineral

Upper Parker 1.46 1,112 778 333 70%
Middle Parker 1.70 1,292 905 388 70%
Lower Parker 7.51 5,716 4,002 1,714 70%
Sound 31.76 24,179 16,928 7,251 70%
Total 42.43 32,299 22,613 9,686

Note. Based on a sediment bulk density of 0.28 g cm�3 and organic content of 30%.

Table 2
Estimated Edge Erosion Throughout the Plum Island Sound Estuary in Terms of Area Eroded and the Mass of Sediments Associated With That Erosion During the
Period 2005–2011

Zone
Area eroded Percent area eroded Mass eroded Mineral mass Organic mass
m2 6yr�1 % yr�1 MT yr�1 MT yr�1 MT yr�1

Upper Parker 5,.004 0.06% 50 35 15
Middle Parker 3,146 0.03% 125 88 37
Lower Parker 52,290 0.12% 4,367 3,058 1,309
Sound 142,832 0.07% 5,476 3,835 1,642
Total Estuary 203,423 0.08% 10,032 7,025 3,007
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The mass of sediment lost (calculated frommeasured bulk density) was
estimated to be 10,023 MT yr�1, with almost an order of magnitude
more from the Lower Parker and Sound zones than the middle and
upper Parker zones. Considering that the average mineral content of
Plum Island marsh sediments is 70% mineral matter by weight
(Morris et al., 2016; Schmidt et al., 1998, PIE-LTER database), mineral
matter inputs to estuarine waters from edge erosion ranged from 37
to 3,836 MT yr�1 for the various zones and totaled 7,019 MT yr�1.

3.4. Sediment Storage in the Water Column

The water column stock of suspended solids (particulate matter, TSS)
shows the typical estuarine longitudinal distribution with a distinctive
estuarine turbidity maximum in the oligohaline region of the estuary
(Figure 5). The distribution is shifted down-estuary in spring reflecting
higher freshwater runoff with lower salinities and lower TSS concentra-
tions in the upper estuary. Median total suspended solid concentra-
tions range from less than 10 mg L�1 at the head and mouth of the
estuary to 30–40 mg L�1 within the estuarine turbidity maximum dur-
ing spring and fall. The median TSS concentration over space and time
was 15.6 mg L�1 (SE = 3.6). Variability at any one station is very high,
reflecting that these data represent 13 years of transect data taken dur-
ing spring and fall: Average CV for all stations was 97 and 93% for
spring and fall, respectively.

The spatial distribution of POM and chl-a is similar to that of total par-
ticulate matter, but median concentrations are considerably lower.
POM comprised between 11 and 59% of TSS at any 1 station, but aver-
aged 17%. The overall median POM concentration was 2.7 mg L�1

(SE = 0.5). It was only at the very head of the estuary, just below the
Parker River dam, that POM made up over 50% of total suspended
solids, consistent with expectations based on watershed measure-
ments. Chl-a (converted to OM), a proxy for live phytoplankton, made
up between 8 and 75% of POM, but averaged 37%. The overall median
chl-a concentration was 1.0-mg organic matter L�1 (SE = 0.2).

Phytoplankton comprised a larger fraction of the total POM in fall (53%) than in spring (16%), reflecting
the long residence time of water relative to phytoplankton growth rates in late summer/early fall. On average,
mineral matter made up the largest fraction of suspended solids along the Plum Island Sound estuary—aver-
aging 83%. The organic fraction made up only 17% of the total.

The mass distribution of suspended solids along the estuary reflects both concentration and volume of water
in each region of the estuary. The mass averaged about 16 MT in zone 1 of the upper Parker River portion of
the estuary and 182 MT in zone 4, the Sound portion of the estuary (Table 3). The average total mass of solids
for the entire estuary was 284 MT. Thus, about one third of the total mass of suspended solids is in the Parker
River portion of the estuary and two third is in waters of Plum Island Sound.

3.5. Isotopic Evidence of Creek Bank Erosion and Tidal Deposition of Ancient Eroded Material Onto
the Marsh Surface
3.5.1. Estuarine Distribution of Δ14C-Depleted Particulate Organic Carbon
The concentrations of POC in the estuary were consistently elevated relative to the river or marine end-
members, which is indicative of an internal source of POC. Of particular interest for this study was the
appearance of organic carbon that likely came from erosion of old marsh peat. Of our four isotope sampling
transects, two showed the internal input of old, Δ14C-depleted material—April 2000 and September 2000,
and one showed an input of δ13C-enriched OC. In September 2000 (Figure 6 and Table 4), Δ14C-POC values
ranged from �27 to �182‰ (Raymond & Hopkinson, 2003), with a corresponding 14C age of 220 to
1,614 years B.P. (Table 4).

Figure 5. Thirteen-year median (CV, error bars) distribution of total suspended
solids, particulate organic matter, and chlorophyll a converted to organic mat-
ter along the main axis of the Plum Island Sound estuary in (top) spring (during
high river flow) and (bottom) fall (during low river flow). Also shown is the dis-
tribution of suspended solids along the length of a third-order tidal creek off
Plum Island Sound during 2016.
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Themost likely source of this Δ14C-depleted, δ13C-enriched organic car-
bon was marsh peat eroded from marsh edges. It did not come from
contemporaneous watershed or ocean inputs as the POC of both these
sources was more Δ14C-enriched than in the estuary in September,
47‰ for the watershed (Raymond & Hopkinson, 2003), and �48‰
for the ocean (Table 4). Watershed POC was δ13C-depleted at
�32.9‰ (Raymond & Hopkinson, 2003). The δ13C-enriched signal in
the estuary is consistent with an input of Spartina organic matter.
Δ14C-depleted, Spartina-derived organic carbon is indicative of eroded,
old peat from marsh shorelines. The potential contribution of eroded
marsh peat to the distribution of suspended POC along the estuary in
September averaged 25% but ranged from 9 to 63% along its length,

based on the end-member mixing model and an average Δ14C value for marsh peat at depth of �220‰.
3.5.2. Distribution of Δ14C-Depleted Organic Carbon in Marsh Sediments
The <63 μm presumably clay-bound fraction of organic matter in a Plum Island Sound marsh core was Δ14C
depleted with values averaging �220‰ and ranging from �194 to �307‰, except for the marsh surface,
which had a value close to modern levels (Levin & Kromer, 1997; Table 5 and Figure 7). The corresponding
14C age of the subsurface sediments was 1,806 to 2,976 years B.P.

Organic carbon, 1,800–3,000 years old in near surface marsh sediments is not what would be expected in
marshes that have been building vertically for almost 4,000 years (Hein et al., 2012) but is consistent with

the input of eroded peats resuspended in the water column and depos-
ited during marsh flooding. As we saw in September 2000, old marsh
peat on occasion makes up 25% of the suspended estuarine POC.

3.6. Resuspension Fluxes

Our estimate of the amount of sediment resuspended and settled into
and out of the water column in association with variations in tidal cur-
rent velocity and waves was extremely large: >187,000 MT yr�1 for
mineral matter and >30,000 MT yr�1 for organic matter (Table 6). For
mineral matter, it ranges from over 10,000 MT yr�1 in the upper estuary
to over 130,000 MT yr�1 in the Sound. For organic matter it ranges from
over 1,200 MT yr�1 to over 22,000 MT yr�1 for the upper estuary and
Sound, respectively. We note that this value represents only fair
weather values (because we sampled by small motorboat) and there-
fore may underestimate true annual resuspension. This spatial pattern
mostly reflects differences in water volume for various sections along
the estuary (factor of 40) as differences in suspended solids concentra-
tion and varied by less than a factor of 10 (Table 3 and Figure 5). There
were no spatial gradients in TSS variability along the estuary (MAD
averaged 42% relative to the median overall). The high resuspension
flux relative to the average mass of suspended solids in the estuary
(Table 3) suggests a very rapid turnover rate (>700 yr�1).

3.7. Mass Balance

The mass balance identifies a large shortfall between marsh accretion
needs and measured sediment inputs from rivers and the erosion of
marsh shoreline edges (Table 6). Rivers supply only 3,210 MT yr�1

and edge erosion supplies 10,032 MT yr�1 or 10% and 31% of marsh
accretion needs, respectively. The mass balance shortfall amounts to
19,070 MT yr�1 and is slightly higher for mineral matter (61%) than
organic matter (55%). Indeed, riverine and edge erosion sources are
insufficient to meet accretionary demands in any section of the estuary.
The shortfall is greatest in zone 2 of the estuary, a zone of no direct

Table 3
Mass of Mineral and Organic Fractions of Suspended Solids (Excluding
Phytoplankton) Along the Length of the Plum Island Sound Estuary Based on
13 Years of Spring and Fall Sampling

Estuarine
zone

Total
solids (MT)

Mineral
fraction (MT)

Organic
fraction (MT)

Upper Parker 16.3 14.5 1.8
Middle Parker 27.7 24.6 3.1
Lower Parker 57.9 50.9 7.1
Sound 181.6 154.5 27.1
Total 283.6 244.5 39.1

Figure 6. (top) Particulate organic carbon concentration and Δ14C-POC versus
conductivity (dots) and the conservative mixing curve (curved line in bottom
figure) along the entire length of the Plum Island Sound estuary in September
2000. Plotting against a conservative tracer is essential for using a two end-
member mixing model to calculate the mass of ancient marsh carbon required
to match the 14C values as observed.
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riverine input of sediments, and least in zone 3, a region with large
edge erosion. Two possible sources of sediment to balance marsh
accretionary needs are discussed in the conclusions: (1) the ocean
and (2) estuarine tidal flats and bay bottoms.

4. Discussion

We used the mass balance approach to examine both mineral and
organic particulate matter sources and sinks within the Plum Island
Sound estuary. Both forms are important components that contribute
to the bulk volume of marsh sediments (Gosselink et al., 1984; Morris,
Shaffer, et al., 2013; Morris et al., 2016) and elevation gain of marshes
over time. While mineral matter contributes to elevation gain only
through surface deposition, organic matter can be accumulated by sur-
face deposition or by in situ net production of refractory root and rhi-
zome tissues (Cahoon et al., 2003; McKee et al., 2007). It is
challenging to tease apart the relative importance of these two path-
ways. We draw on additional studies conducted in the Plum Island

Sound ecosystem to put the results of this study in perspective. Measures of metabolism using the eddy cov-
ariance approach in the marshes adjacent to Plum Island Sound show net ecosystem exchange (NEE) to aver-
age 168 gC m�2 yr�1 (Forbrich et al., 2018), indicating the potential for accumulation of refractory root and
rhizome material produced in situ. If all the NEE is associated with belowground production, then in situ pro-
duction can provide 147% of the organic matter required to support historic rates of marsh elevation gain of
2.8 mm yr�1 (Forbrich et al., 2018). Thus, there is no need for additional organic matter inputs to maintain
marsh elevation gain at the rate of 2.8 mm yr�1. Interestingly, marker horizons show that accretion of mineral
and organic matter on the marsh surface (Cavatorta et al., 2003) matches total marsh elevation gain as
observed with SETs (Wilson et al., 2014; PIE-LTER database). Thus, in addition to net belowground production
of organic matter, there is an additional input of organic matter to the marsh deposited during tidal inunda-
tion. We do not have quantitative measures of the mass of organic matter accumulating over marker hori-
zons, just depth. We can estimate organic matter deposition, however, on the basis of the amount of
mineral matter associated with marsh accretion (Table 6) and the relative organic matter content of total sus-
pended solids in tidal water (mineral matter * [1 � (mineral/TSS)] converted to organic matter or
1,570 MT yr�1. If none of the deposited organic matter is decomposed (unlikely), this is only 16% of the
amount organic matter required to support marsh elevation gain (Table 6). Surface organic matter deposition
could becomemore important in the future if the balance between primary production and respiration shifts
toward less NEE with a changing climate (Megonigal et al., 2016). Therefore, the Plum Island Sound marshes
are both a sink for mineral and organic matter brought in from a variety of potential sources (e.g., river and
edge erosion) and a source of organic matter for the estuary and perhaps the coastal ocean. Estuarine meta-
bolic studies show the estuary to be heterotrophic and dependent on allochthonous organic matter inputs
from the marshes (Vallino et al., 2005).

As there are large differences in the relative importance of sediment sources along the length of the estuary,
we discuss them separately.

4.1. Rivers

Particulate matter inputs from rivers draining into the estuary were of
low overall importance in meeting accretionary needs of estuarine
marshes (Figure 8 and Table 6). On average, river inputs are equivalent
to 8% of marsh mineral needs and 14% of organic matter needs. The
large organic contribution reflects the high organic content of riverine
suspended particulate matter (31%) and the fact that we included dis-
solved organic matter that flocculates once it meets the higher ionic
strength of seawater as a river input of particulate matter. River inputs
were very important in meeting accretionary needs in zone 1, the
upper estuary, with inputs equivalent to 30% of mineral (Figure 8)

Table 4
Δ14C, 14C Age, and Concentration of Particulate Organic Carbon (POC) in the
Water Column Along the Entire Length of the Plum Island Sound Estuary in
September 2000

Conductivity
(mS cm�1)

Δ14C
(‰)

14C age
(B.P.)

[POC]
μmol L�1

% of POC
marsh derived

0.29 47 0 47 0
0.92 �35 328 207 12%
2.67 �131 1,119 196 45%
5.5 �27 203 131 9%
15.3 �53 583 105 18%
25.7 �68 1,212 92 23%
45.3 �182 1,594 53 63%
50.4 �49 328 31
Average 25%

Note. Potential contribution of eroded ancient marsh peat to total POC calcu-
lated assuming no contribution from the watershed and an average Δ14C of
marsh peat of �220‰ (Table 4).

Table 5
Isotopic Evidence for the Deposition of Ancient Organic Matter Onto the Marsh via
Tidal Flooding

Sample
depth (cm)

14C age (B.P.)
and Δ14C

Calibrated 2σ formation
time range

Surface (0) Modern 70 1950s
2.5 1,832–197 82 to 313 A.D.
22.5 1,806–194 90 to 334 A.D.
42.5 2,976–307 1371 to 1055 B.C.
67.5 1,925–206 37 B.C. to 210 A.D.
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and 53% of organic matter needs. In contrast, river inputs are able to
meet only between 0 and 14% of particulate needs lower in the estuary.
The importance in the upper estuary reflects the small wetland area
there relative to the mass of inputs—only 3% of estuarine marshes
are in the upper stretches of the estuary.

While riverine inputs of sediment are a large component of estuarine
sediment budgets in some systems (e.g., 40% in the Brisbane Estuary,
50% in the Hudson River estuary, and 28% in the Chesapeake Bay estu-
ary), the relatively low importance in the Plum Island Sound estuary
should not be unexpected (Eyre et al., 1998; Geyer et al., 2001; Hobbs
et al., 1992). The overall sediment yield from the Ipswich and Parker
River watersheds is extremely low (3.1 MT km�2) in comparison to
the range reported in the literature: 5–1,460 MT km�2 (Lane et al.,
1997) and the global mean of 120 MT km�2 (Syvitski et al., 2005). The
low relief of the Ipswich and Parker River watersheds, coupled with
relatively high freshwater wetland and forest land cover and high den-
sity of dams, retards sediment erosion and promotes sediment trap-
ping within the watershed itself.

The importance of riverine particulate matter inputs may decline in the
future given current trends in declining river sediment inputs region-
ally and globally (Meade & Trimble, 1974; Milliman & Syvitski, 1992;
Syvitski et al., 2005; Weston, 2013). Agriculture has declined consider-
ably in the Parker and Ipswich River basins over the last century,
replaced by forest (Claessens et al., 2006). In recent decades, urban
areas have expanded. Forest lands have much lower erosion rates than
agriculture or urban areas. However, urbanization is concentrated in
the upper portions of the largest watershed draining to the estuary
(Mineau et al., 2015). It is unlikely that much of the urban sediment
sources are currently reaching the estuary because of the distant loca-
tion of sources combined with the shallow slopes, extensive riparian
wetlands, several reservoirs, and expanding beaver ponds in the region
(Wollheim et al., 2014, 2015). Ongoing and potential human dam

Figure 7. Δ14C and 14C age of clay-bound fine particulate organic carbon distri-
bution in a core of Spartina patensmarsh sediment from the Plum Island Sound
estuary.

Table 6
Balance of Sediment Fluxes in the Plum Island Sound Estuary

Zone 1 Zone 2 Zone 3 Sound Total estuary

Sediment source or sink Mineral
Organic
matter Mineral

Organic
matter Mineral

Organic
matter Mineral

Organic
matter Mineral

Organic
matter

Marsh accretion 778 333 905 388 4,002 1,714 16,928 7,251 22,613 9,686
River 237 178 0 0 227 171 1,369 1,028 1,833 1,377
Edge erosion 35 15 88 37 3,058 1,309 3,835 1,642 7,025 3,007
Shortfall 506 140 817 351 717 234 11,724 4,581 13,764 5,306
Percent missing 65% 42% 90% 90% 18% 14% 69% 63% 61% 55%
Ocean scenario
Ocean or lower estuary 506 139 817 350 718 234 11,724 4,580 13,765 5,303
Cumulative from lower
estuary or ocean

506 139 1,323 490 2,041 723 13,765 5,303

Tidal flat scenario
Resuspension 10,321 1,276 16,758 2,116 29,801 4,137 130,382 22,864 187,263 30,393
Settling 9,815 1,136 15,941 1,765 29,084 3,903 118,658 18,283 173,499 25,087
Percent retained
on marsh

5% 11% 5% 17% 2% 6% 9% 20% 7% 17%

Note. Other than percentages, units are MT yr�1.
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removals will lead to increasing sediment exports (Foley et al., 2017; Magirl et al., 2015; Warrick et al., 2015).
Current dam removals are in midreaches of the watershed so that even if sediments are liberated following
dam removal, most will probably be trapped behind dams lower along the river. However, the head of tide
dam in Ipswich is also currently being discussed for potential removal, which would have a much greater
impact on sediment loading if it was removed.

Climate change may also contribute to altered sediment delivery in the future. Spring runoff is less pro-
nounced than previously due to less snowpack (Claessens et al., 2006), and this may decrease the sediment
load to the estuary. Cook et al. (2015) suggest that a wetter future climate in the New England region will con-
tribute to a greater incidence of landslides, which will have a greater influence on erosion than land use
change. The low relief of the Parker and Ipswich River watershed, however, will likely not translate into land-
slides as observed in more mountainous regions of New England. However, future climates are also likely to
result in greater extreme events, which could lead to storm events with sufficient power to transport more
sediments to the estuary (Dhillon & Inamdar, 2013).

Our estimate of sediment inputs to the estuary is based on almost a decade of sampling (end of 2006 through
2014) at river stages running from record highs to record lows since 1929 and on rising and falling limbs of
storm hydrographs. It is possible that we have underestimated sediment inputs, but even if we are off by a
factor of 2, the relative importance of river inputs of particulate matter would only increase from 8% to
16%. It appears that given the increase in rates of SLR in the past century, watershed inputs of sediments have
not played an important role in marsh expansion and elevation gain since the mid-1800s when land clearing
and agriculture were at their greatest extent (Kirwan et al., 2011; Priestas et al., 2012). Agricultural abandon-
ment, reforestation, and damming likely contributed to declines in sediment yield from the watershed since
then, as has been observed elsewhere (Meade & Trimble, 1974; Milliman & Syvitski, 1992; Syvitski et al., 2005;
Warrick et al., 2013; Weston, 2013).

4.2. Edge Erosion

Our measures of marsh shoreline erosion support our personal observations of marsh loss over the past
25 years, empirical data on shoreline erosion in Plum Island Sound (Leonardi & Fagherazzi, 2014, 2015),
and simulation models that predict bay expansion due to low estuarine suspended solids concentrations
and SLR (Mariotti & Fagherazzi, 2010, 2013). Our results show that shoreline erosion is prevalent throughout
the Plum Island Sound estuary, however, and not just where it has been measured by field survey in the
Sound (Leonardi & Fagherazzi, 2014, 2015). On an absolute basis, annual erosion rates from zone to zone ran-
ged from 834 to 23,800 m2, being least in the upper 5 km of the estuary and greatest in the marshes adjacent
to Plum Island Sound. The percentage of marsh area lost was low for all regions and ranged from 0.03% to
0.12% per year. While the area eroded was related to the area of marsh in each region (R2 0.68), edge

Figure 8. Summary of river, shoreline erosion, and ocean or tidal flats and creek bottom mineral sediment inputs to
marshes in four zones along the Plum Island Sound estuary that enable marshes to maintain elevation relative to current
rates of sea level rise (2.8 mm yr�1). Unit: MT d�1.
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erosion was disproportionately higher in zone 3 of the estuary with erosion rates twice the average for the
entire estuary. At these rates of edge erosion and current rates of SLR and wave climates, 50% of existing
marshes in the Plum Island estuary will have erodedwithin 1,000 years. Ganju et al. (2017) observed for micro-
tidal systems on the east and west coasts of the United States that the ratio of unvegetated to vegetated
marsh area (UVVR) for an estuarine system was a good indicator of marsh health, that is, a marsh complex
that imported sufficient sediment to counter SLR and internal erosion. They found that as the UVVR increased
(less marsh relative to water), the greater the net sediment budget deficit (sediment was being lost) and the
shorter the lifespan of the marsh complex. Based on the average UVVR for Plum Island Soundmarshes, which
is 0.41:1, the lifespan should be on the order of 200 years based on the relation Ganju et al. found. This is
much shorter than the rate we calculated based on measured edge erosion rates and presumably is related
to the large sediment capital associated with the mesotidal Plum Island marshes that are perched above
MHHW for the most part (Millette et al., 2010). Compared to a microtidal marsh, muchmore sediment volume
must be eroded before the sediment stored in the marsh plain above mean sea level is expended through a
net sediment deficit. This supports the idea of Kirwan et al. (2010) that vulnerability of marshes to submer-
gence decreases with increasing tidal range.

Hughes et al. (2009) and Wilson et al. (2014) previously documented headwater erosion and widening for
first-order tidal creeks in Plum Island Sound estuary. Our results agree with observations of marsh shoreline
erosion from other tidal wetland systems as well, for example, marsh losses in Louisiana, >25% marsh area
lost since late 1800s (Blum & Roberts, 2012); southern New England, losing marsh at rate of 0.42% yr�1 for
past 30–40 years (Watson et al., 2017); Choptank River in Maryland, losing marsh at rate of 0.11% yr�1

1939–1980 (Yarbro et al., 1983); and Rehoboth Bay in Delaware, edge erosion at 14–43 cm yr�1 over a 3-year
period in 1980s (Schwimmer, 2001).

The liberated sediment has the potential to meet a substantial portion of marsh accretionary needs. As
eroded marsh has the same mineral and organic content as the marsh platform, a cubic meter of eroded
marsh can provide the necessary sediment for a large area of marsh: 1-m3 volume lost per year (from
≤1-m erosion) is equivalent to 357-m2 marsh surface at 2.8 mm yr�1 accretion. Edge erosion has the potential
to meet on average 31% of the marsh organic and mineral needs of estuarine marshes currently in existence.
The importance is especially high in zone 3, the Lower Parker River portion of the estuary, where we estimate
that over three fourth of accretionary needs can be met by this pathway (Figure 8).

Our estimate of the relative importance of eroded marsh sediment in meeting accretionary needs of the
marsh is potential only. Some material in undoubtedly exchanged with oceanic water during tidal mixing
and lost from the system. LeMay (2005) suggested that mosquito ditches were an important sediment sink
in heavily ditched portions of the Plum Island Soundmarsh. Thus, an unknown fraction of eroded marsh sedi-
ment actually is deposited on the marsh platform. Of course the same is true for sediments derived from any
internal or external source.

Modeling studies suggest that shoreline erosion will increase in the Plum Island Sound estuary in the future
(Fagherazzi et al., 2013; Leonardi et al., 2016; Mariotti & Fagherazzi, 2013). With low suspended sediment con-
centrations, increasing rates of SLR, and increasing rates of storminess for this region (Hayden & Hayden,
2003), tidal flats in front of eroding shorelines deepen as waves erode the marsh shoreline. As tidal flats dee-
pen, wave height increases, which leads to a positive feedback that results in continued marsh deterioration
(Mariotti & Fagherazzi, 2013).
4.2.1. Limitations to Importance of Edge Erosion in Meeting Marsh Accretion Needs
As with any internal or external source of sediment, all sources mix into a common pool of sediment that
resides in both the water column and bay bottoms and tidal flats until it is either deposited onto the marsh
surface, accumulates in bay bottoms, or is exported to the sea. Concentrations of suspended matter in the
water column rise and fall in relation to tidal current strength and wave energy (Ganju et al., 2017). When
we estimate the relative contribution of different sediment sources to marsh accretion, we assume that they
are proportional to relative inputs. In this study we have additional information about two sediment sources,
however eroded peat from edge erosion and rivers. Δ14C (highly depleted) and δ13C (heavy) data confirm
that sediment from eroded marsh shorelines contributes to particulate matter suspended in the water col-
umn along the Plum Island Sound estuary. In our September field sampling, we found that on average,
25% of estuarine suspended POM was composed of ancient marsh peat, ranging up to 63% (Table 5). That
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we only observed this strong signal in September implies that resus-
pension of eroded peat is not continuous or that at other times of
the year greater contributions from the watershed or estuarine phyto-
plankton overwhelm the marsh peat signal. On that day, there was 17
MT of ancient POM suspended in the water column or enough to sup-
port marsh accretion for 0.6 days (17 MT/26.54 MT d�1 average daily
organic matter accretionary need; Table 6). The extremely short resi-
dence time of particulate mineral and organic matter held in suspen-
sion in the water column shows how dynamic these pools are and
that the resupply rate is extremely high.

In addition to the presence of ancient peat resuspended in the water
column, the near surface depth distribution of Δ14C-depleted organic
carbon in marsh sediments (Table 4 and Figure 4) was consistent with
the deposition of old marsh peat via tidal flooding. We cannot rule
out the potential importance of watershed-derived organic carbon as
the source of ancient organic carbon, however, because at other times
of the year the Δ14C of riverine POC was also nearly as depleted, aver-
aging �89‰ and ranging from 47 to�190‰ (Raymond & Hopkinson,
2003). This is not far from our marsh peat value of �220‰. The large
δ13C difference between watershed and Spartina-derived POC would
help clarify sources. Unfortunately, we lack a measure of the δ13C con-

tent of the Δ14C-depleted humin fraction of marsh sediment OC.

4.3. Sources Calculated by Mass Balance: Tidal Flats or the Ocean

A mass balance shortfall in river and marsh edge erosion inputs in matching marsh sediment accretion
unequivocally shows the need for an additional sediment source. Rivers and edge erosion together supply
39% and 45% of mineral and organic matter needs (Table 6 and Figure 9). The two most likely additional
sources are inputs from the (1) ocean or inputs from (2) erosion of bay bottoms and tidal flats.

While we calculated budgets for both mineral and organic matter, our analysis approach is most appropriate
for mineral matter because we found earlier that there is sufficient marsh NEE attributable to the accumula-
tion of undecomposed root and rhizome material to supply in excess of 100% of organic matter accretion
needs (Forbrich et al., 2018). Further work will be required to more fully understand the production, respira-
tion, transport, export, and burial of organic carbon produced in Plum Island Sound estuary marshes and to
balance the overall estuarine organic and inorganic carbon budgets. The remaining discussion pertains spe-
cifically to mineral matter budgets.

The magnitude and relative importance of oceanic or tidal flat mineral sediment inputs vary over the length
of the estuary. On the order of 500–800 MT yr�1 are required to balance the sediment shortfall in each of the
three zones along the tidal river, while an order of magnitude more is required to meet mineral needs of the
marshes adjacent to Plum Island Sound (11,724 MT yr�1; Table 6 and Figure 8). In contrast, the relative impor-
tance of additional mineral inputs is least in zone 3 (18%) and highest in zone 2 (90%).

We lack measures of net oceanic inputs or net erosion of bay bottoms and tidal flats for the Plum Island
Sound system. A conceptual model lumped for the entire system simplifies discussion of the potential impor-
tance of the tidal flat and oceanic inputs (Figure 9). The settling flux is the balance between what is resus-
pended with each tide (187,263 MT yr�1) and the mass balance shortfall (13,764 MT yr�1). If the ocean
provides all the additional sediment required to balance the sediment budget, then settling flux would be
the same as the resuspension flux. The settling flux decreases in magnitude in direct proportion to a decrease
in oceanic inputs, such that in the absence of oceanic inputs, all sediment would have to be derived from bay
bottoms and tidal flats and the settling flux would be 173,499 MT yr�1 (187,263–13,764).
4.3.1. Potential Ocean Sediment Inputs
A potentially large importance of oceanic sources in meetingmarsh accretionary needs (Table 6 and Figure 9)
was unexpected, especially considering the typically low concentration of total suspended solids (SSC) at the
ocean end-member (Figure 5). However, based on the total mass of suspended solids entering the estuary

Figure 9. Sediment mass balance for the Plum Island Sound estuary highlight-
ing the measured and potential sources of mineral matter sustaining accretion
and elevation gain of the marsh platform. The ocean input of sediment was
calculated by mass balance between accretion, river, and edge erosion fluxes,
assuming no net loss of resuspended solids. The difference between resuspen-
sion and settling is exactly the same as the ocean input and was also calculated
by mass balance, but in this case assuming no ocean inputs. Units: MT
(median annual mass of total suspended solids mass throughout the entire
estuary, 245) or MT yr�1.
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with each tide (tidal volume × maximum suspended solid concentration at the estuary-ocean inlet), the sedi-
ment volume needed for marsh survival would be only 7% of the total. Ganju et al. (2017) suggest that the
flood-ebb SSC differential is a measure of net sediment flux in the system, although a difference of 7% in
SSC would be challenging to detect, considering the high variability in SSC in the estuary and expected spa-
tial patterns across the inlet cross section.

While unexpected, our finding of critical ocean sediment inputs in support of marsh accretion is in agreement
with other studies looking at overall estuarine sediment budgets (most of which lacked a focus on wetland
survival; Eyre et al., 1998). Over 61% of external sediment inputs to the Brisbane estuary are oceanic (Eyre
et al., 1998). A sediment budget for Chesapeake Bay showed that at least 40% of sediment originates from
the ocean (Hobbs et al., 1992) as riverine inputs and shoreline erosionmeasured over the past 100 years could
not match measured rates of bay deposition. In the Humber estuary, while fluvial inputs were substantially
larger than erosion inputs, mass balance indicated the need for substantial inputs from the ocean
(Townsend &Whitehead, 2003). Geyer et al. (2001) observed a strong seasonality in ocean inputs of sediment
to the Hudson River estuary, being most important during low river flow, neap tide conditions. Meade (1969)
concluded that under normal flow conditions most estuaries tend to import sediment from the sea. The cal-
culated overall importance of ocean sediments is higher in the Plum Island Sound estuary than any of these
previous studies.

The most likely source of oceanic sediments is the Merrimack River. Merrimack water enters the Gulf of Maine
at the northern end of Plum Island and is carried south toward Plum Island Sound with the coastal current.
Indeed, a complex recirculation loop between Plum Island Sound, the Merrimack River, and the coastal ocean
was recently identified through hydrodynamic modeling (Zhao et al., 2010). Historically, most sediment form-
ing Plum Island and involved in initial bay infilling was derived from reworking of glaciogenic shelf deposits,
but since that time, the island has been in a stable postparaglacial state (Hein et al., 2012), dependent on riv-
erine sources. But can we assume that as long as the barrier island remains stable, the oceanic sources of
estuarine infilling will be stable as well?
4.3.2. Potential Tidal Flat Sediment Input
Sediment resuspended into the water column during every flood and ebb tide is by far the largest sediment
flux we examined in the Plum Island Sound estuary, and mass balance shows that it can easily meet marsh
accretionary needs (Figure 9). On average the resuspension flux is 1 to 2 orders of magnitude larger than
mineral inputs from rivers and edge erosion. The resuspension flux is 14× larger than that needed for mass
balance. The settling flux, which represents the difference between resuspension and the amount required
for marsh accretion mass balance lacking net oceanic inputs, is only 7% smaller than resuspension. Thus, only
a small fraction of what is resuspended needs to be deposited onto the marsh surface in order for the marsh
to maintain elevation relative to SLR.

If there is a net loss of sediments from bay bottoms and tidal flats, bottom elevations will decrease and water
depths increase. Based on themass of resuspended sediments deposited on themarsh platform, we estimate
a net loss in elevation of 3–7mm yr�1 (depending on Sound and tidal creek bulk density which ranges from 1
to 2 g/cc). In conjunction with SLR, this would amount to an average deepening of up to 1 cm yr�1, a rate
substantially in excess of SLR.

A deepening of tidal flats is in accordance with models of bay enlargement and marsh edge erosion under
conditions of rising sea level and decreased sediment availability (Fagherazzi et al., 2013; Mariotti &
Fagherazzi, 2013). As SLRs and tidal flats erode in conjunction with sediment lost to marsh accretion, tidal flat
depths increase, which enhances waves and bottom erosion. Thus, the loss of resuspended sediments to
marsh platform accretion results in a positive feedback to continued increases in tidal flat depth and
bottom erosion.

4.4. Big Picture

The sediment mass balance approach is a powerful tool for identifying the relative importance of internal and
external sources of sediment contributing to elevation gain of Plum Island Sound tidal marshes relative to
SLR. There are few reliable sediment budgets of estuaries (French et al., 2008), andmost sediment studies lack
one or more major sources or sinks required to balance the budget. Where they have been constructed, how-
ever, it appears that both oceanic and internal erosion inputs are important components of the overall
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balance (Eyre et al., 1998; Hobbs et al., 1992; Marcus & Kearney, 1991; Meade, 1969; Townsend & Whitehead,
2003; Yarbro et al., 1983).

Reliance on an internal source of sediments attributed to marsh shoreline erosion points to a long-term pro-
blem in tidal wetland survival. While marshes on the marsh platform appear to be maintaining elevation rela-
tive to SLR, to some extent, it is at the expense of the areal extent of the overall marsh (Mariotti & Carr, 2014).
Considering that the rate of SLR is predicted to greatly accelerate (Walsh et al., 2014), with water levels under
some CO2 emission scenarios to exceed 2m by 2100 (Sweet et al., 2017), we can expect the areal extent of the
Plum Island Sound marshes to decrease more rapidly in the future (Fagherazzi et al., 2013). A change in the
relative area of wetlands to open water and the importance of sediments derived from eroding marshes in
contributing to marsh elevation gain has been predicted and observed in other systems as well, including
Blackwater River marshes (Ganju et al., 2015) and several microtidal systems along the Gulf of Mexico and
Atlantic shorelines of the USA (Ganju et al., 2017).

By focusing attention on the survival of tidal wetlands, we may be underestimating the deterioration of the
larger system including bay bottoms and tidal flats. It may be that the tidal flats are losing sediments and we
do not know it, because it is difficult to quantify very small changes in bottom depth underwater or net
exchange with the ocean. We do not perceive deterioration because the resuspension is so large and it
appears as if there is a limitless sediment stock in the water column for the marshes. In the long run, it
may be that tidal flats erode and no longer moderate wave energy at the marsh edge. With increased wave
energy, marsh edge erosion will increase and the loss of marsh areal extent will accelerate, especially with
increasing rates of SLR. The marsh platform is protected by the high resuspension rates. As tidal flats are
eroded, the marshes are saved, but only temporarily. We conclude that we should focus more attention on
quantifying net oceanic sediment exchange and long-term tidal flat and bay bottom dynamics in order to
better understand the equilibrium of the system.

There has been a renewed interest in the global carbon balance of marsh-estuarine systems the past decade,
primarily as a result of blue carbon burial of organic carbon in tidal wetlands (Hopkinson et al., 2012). Several
of the organic matter fluxes measured and calculated in this study need to be considered in reexaminations
of the global coastal ocean carbon balance. Deposition of organic matter onto the marsh surface in conjunc-
tion with mineral deposition as well as edge erosion need to be incorporated. These two fluxes are roughly
10–20% of recent measures of marsh NEE (Forbrich et al., 2018) and will likely increase substantially in the
future as the rate of SLR accelerates and river sediment export decreases. Current model estimates of marsh
gross primary production, ecosystem respiration, net ecosystem production, and burial (e.g., Bauer et al.,
2013) underestimate the exchange with adjacent systems when not factoring in marsh surface organic mat-
ter deposition and marsh edge erosion.

4.5. Management

Recently, there has been considerable scientific and management interest in armoring wetland edges with
either living shorelines or hard surfaces, such as rip raps and seawalls. The interest stems from our realization
of the immense value of the ecosystem services provided by these tidal wetlands (Barbier et al., 2011;
Costanza et al., 1997; Koch et al., 2009; Worm et al., 2006) and our desire not to lose these services.
Armoring is especially prevalent along wetland shorelines adjacent to urban/suburban lands (Alexander,
2010). Our study casts doubt on the wisdom of armoring, however. We show that the sediment eroded from
marsh shorelines is essential to maintaining elevation of the marsh platform relative to SLR. Reductions in
sediment availability brought about by marsh armoring may lead to their inability to maintain elevation
and to eventually drown. It remains to be seen how marsh loss by shoreline erosion compares to marsh loss
due to drowning of interior marshes because of inadequate sediment availability. Marsh drowning losses will
be especially true in systems currently dependent on erosion inputs of sediments, microtidal systems, and
systems with inherently low concentrations of suspended particulate matter (Ganju et al., 2015, 2017;
Kirwan et al., 2016).

5. Conclusions

Inputs of sediments from rivers provide less than 10% of marsh accretionary needs in Plum Island
Sound estuary.
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Erosion of the marsh shoreline is occurring throughout the Plum Island Sound estuary. It represents a signifi-
cant sediment source to the estuary that contributes to elevation gain of the remaining marsh platform.

The combined sediment input from rivers andmarsh shoreline erosion provides only 39% of themineral sedi-
ment required for marshes to maintain elevation relative to SLR. Yet marshes in this estuary have accreted at
rates comparable to SLR in past decades. This suggests that sediment input from the ocean or from erosion of
tidal flats is an important factor in the marsh accretionary sediment budget of the system.

Deposition of eroded marsh peat and mineral matter from creek banks makes up a significant portion of the
marsh sediment budget. Consequently, the marsh platform has been able to maintain its relative elevation at
the expense of total marsh area.

Marshes provide critical ecosystem services to communities living in the coastal zone through moderation of
storm surge and wave energy and to people in general through their significant rates of carbon dioxide
removal from the atmosphere (Hopkinson et al., 2012). Increased rates of SLR and increased coastal stormi-
ness as a result of continued increases in atmospheric CO2 levels will compromise the ability of marshes to
continue to provide ecosystem services, especially as sediment shortfalls becomemore prevalent worldwide.
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