144 research outputs found

    How to read an electrocardiogram (ECG). Part 1: Basic principles of the ECG. The normal ECG

    Get PDF
    No Abstrac

    How to read an electrocardiogram (ECG). Part 2: Abnormalities of electrical conduction

    Get PDF
    No Abstrac

    Effect of Cross-Validation on the Output of Multiple Testing Procedures

    Get PDF
    High dimensional data with sparsity is routinely observed in many scientific disciplines. Filtering out the signals embedded in noise is a canonical problem in such situations requiring multiple testing. The Benjamini--Hochberg procedure using False Discovery Rate control is the gold standard in large scale multiple testing. In Majumder et al. (2009) an internally cross-validated form of the procedure is used to avoid a costly replicate study and the complications that arise from population selection in such studies (i.e. extraneous variables). I implement this procedure and run extensive simulation studies under increasing levels of dependence among parameters and different data generating distributions and compare results with other common techniques. I illustrate that the internally cross-validated Benjamini--Hochberg procedure results in a significantly reduced false discovery rate, while maintaining a reasonable, though increased, false negative rate, and in a reduction to inherent variability under strong dependence structures when compared with the usual Benjamini--Hochberg procedure. In the discussion section, I describe some possibilities for relevant applications and future studies

    Development of a rhesus monkey lung geometry model and application to particle deposition in comparison to humans

    Get PDF
    The exposure-dose-response characterization of an inhalation hazard established in an animal species needs to be translated to an equivalent characterization in humans relative to comparable doses or exposure scenarios. Here, the first geometry model of the conducting airways for rhesus monkeys is developed based upon CT images of the conducting airways of a 6-month-old male, rhesus monkey. An algorithm was developed for adding the alveolar region airways using published rhesus morphometric data. The resultant lung geometry model can be used in mechanistic particle or gaseous dosimetry models. Such dosimetry models require estimates of the upper respiratory tract volume of the animal and the functional residual capacity, as well as of the tidal volume and breathing frequency of the animal. The relationship of these variables to rhesus monkeys of differing body weights was established by synthesizing and modeling published data as well as modeling pulmonary function measurements on 121 rhesus control animals. Deposition patterns of particles up to 10 ÎĽm in size were examined for endotracheal and and up to 5 ÎĽm for spontaneous breathing in infant and young adult monkeys and compared to those for humans. Deposition fraction of respirable size particles was found to be higher in the conducting airways of infant and young adult rhesus monkeys compared to humans. Due to the filtering effect of the conducting airways, pulmonary deposition in rhesus monkeys was lower than that in humans. Future research areas are identified that would either allow replacing assumptions or improving the newly developed lung model

    International consensus conference recommendations on ultrasound education for undergraduate medical students

    Get PDF
    Objectives: The purpose of this study is to provide expert consensus recommendations to establish a global ultrasound curriculum for undergraduate medical students. Methods: 64 multi-disciplinary ultrasound experts from 16 countries, 50 multi-disciplinary ultrasound consultants, and 21 medical students and residents contributed to these recommendations. A modified Delphi consensus method was used that included a systematic literature search, evaluation of the quality of literature by the GRADE system, and the RAND appropriateness method for panel judgment and consensus decisions. The process included four in-person international discussion sessions and two rounds of online voting. Results: A total of 332 consensus conference statements in four curricular domains were considered: (1) curricular scope (4 statements), (2) curricular rationale (10 statements), (3) curricular characteristics (14 statements), and (4) curricular content (304 statements). Of these 332 statements, 145 were recommended, 126 were strongly recommended, and 61 were not recommended. Important aspects of an undergraduate ultrasound curriculum identified include curricular integration across the basic and clinical sciences and a competency and entrustable professional activity-based model. The curriculum should form the foundation of a life-long continuum of ultrasound education that prepares students for advanced training and patient care. In addition, the curriculum should complement and support the medical school curriculum as a whole with enhanced understanding of anatomy, physiology, pathophysiological processes and clinical practice without displacing other important undergraduate learning. The content of the curriculum should be appropriate for the medical student level of training, evidence and expert opinion based, and include ongoing collaborative research and development to ensure optimum educational value and patient care. Conclusions: The international consensus conference has provided the first comprehensive document of recommendations for a basic ultrasound curriculum. The document reflects the opinion of a diverse and representative group of international expert ultrasound practitioners, educators, and learners. These recommendations can standardize undergraduate medical student ultrasound education while serving as a basis for additional research in medical education and the application of ultrasound in clinical practice

    The service economy

    Full text link
    • …
    corecore