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Abstract

High dimensional data with sparsity is routinely observed in many scientific disciplines.

Filtering out the signals embedded in noise is a canonical problem in such situations requiring

multiple testing. The Benjamini–Hochberg procedure (BH) using False Discovery Rate control is

the gold standard in large scale multiple testing. In Majumder et al. (2009) an internally

cross-validated form of the procedure is used to avoid a costly replicate study and the

complications that arise from population selection in such studies (i.e. extraneous variables). I

implement this procedure and run extensive simulation studies under increasing levels of

dependence among parameters and different data generating distributions and compare results

with other common techniques. I illustrate that the internally cross-validated

Benjamini–Hochberg procedure results in a significantly reduced false discovery rate, while

maintaining a reasonable, though increased, false negative rate, and in a reduction to inherent

variability under strong dependence structures when compared with the usual

Benjamini–Hochberg procedure. In the discussion section, I describe some possibilities for

relevant applications and future studies.
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Chapter 1

Introduction

Simultaneous hypothesis testing refers to situations in which a multitude of hypothesis tests are

simultaneously evaluated on a data set. The number of hypotheses to be tested can range from just

three or four (e.g. testing the effect of extracurricular activities on school performance) to well

over a million (e.g. testing for significant genes), each incurring a similar problem. When

performing a singular hypothesis test, a significance level is set, e.g. α = 0.05, and the test

proceeds with the consideration that the probability of a type I error is controlled at 5%. By

contrast, when twenty such tests are performed, it can be expected that at least one of those tests

are likely to show significance by pure chance. Furthermore, it is easy to see that as the number of

tests performed increases, so too does the probability of at least one false rejection occurring.

Understanding that a false rejection occurs when the null hypothesis for such tests is rejected

when the null hypothesis is actually true, i.e. a type I error.

There are many reasons why researchers will want to run simultaneous hypothesis tests. To

begin with, it is cheaper to run one test involving a multitude of variables than it would be to run

many tests while controlling for other variables. For data collection, it is often easier to ask a few

more questions than it is to collect a second sample. In the case of genomic data, a researcher

may be interested in finding significant genes among thousands or millions (Efron, 2010)[15-17].

However, we still need to be able to trust the results of our hypothesis tests which has lead

statisticians to develop multiple testing methods for controlling simultaneous hypothesis testing

error rates.

1.1 Family Wise Error Rate

The classic approach to this problem is to control the Family Wise Error Rate (FWER). The

FWER is defined as the probability of making at least one false-rejection in a family of multiple

testing problems. Consider such a family of N hypothesis tests, the null of which are denoted as

H0i, with i ∈ 1, 2, ..., N . Then we can write the FWER as in equation 1.1.
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FWER control is achieved by creating an rejection rule such that the probability of at least

one false rejection is bounded by α. The most well known method of FWER control is the

Bonferroni correction. To make the Bonferroni correction, statisticians divide α by N and use the

result to carry out the simultaneous hypothesis tests as usual. Thus, letting pi denote the p-value

of the ith hypothesis test, each pi will be compared with α
N

to determine whether to reject or fail

to reject H0i. Letting N0 be the number of true null hypothesis, the FWER can be shown to be

N0
α
N
≤ α, meaning that the Bonferroni correction does control the FWER (Efron, 2010).

FWER = P (Reject any true H0i) (1.1)

While FWER control is widely used and easy to implement, it is not always the most

appropriate multiple testing procedure to use. Considering the Bonferroni correction, when 10

tests are ran simultaneously at an α = 5% level, in order for any test to reject the null the p-value

must be less than 0.005, which is already small. Suppose instead there are to be 6,359 tests as in

Van Steen et al. (2005) where researchers are interested in finding significant genes in mice, then

the significance level for each individual test drops to α
N

= 0.05
6,359

= 7.86× 10−6. Clearly as

N →∞, then α
N
→ 0, and the probability of rejecting any null hypothesis goes to 0.

Consequentially, this also leads to a dramatic loss in power for such tests. So as general rule, as N

grows large FWER control methods are seen to be too conservative in their approach. The more

tests there are, the more tests that are likely to be rejected. However, there is another multiple

testing method that corrects for this problem.

1.2 False Discovery Rate

What makes FWER control methods so conservative is that these methods attempt to control the

probability of there being any false rejections among all parameters to be tested. If this

requirement is loosened a little to allow some proportion of our rejections to be false, then we are

more likely to capture more true rejections as well. This insight is the motivation behind the False

Discovery Rate (hereafter FDR) Control method proposed in Benjamini & Hochberg (1995).
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Table 1.1 summarizes the outcome of some multiple testing procedure with N tests and N0

true null hypotheses. On table 1.1, the number of tests where H0 is true and not rejected is given

by the random variable U , where H0 is false and not rejected is given by the random variable T ,

where H0 is true and rejected is given by the random variable V , and where H0 is false and is

rejected is given by the random variable S. Then R = S + V gives us the total number of tests

where the H0 is rejected, N − S gives the total number of tests where the H0 is not rejected, and

N −N0 gives the total number of false null hypotheses. All of U , V , T , S, R, N , and N0 are in

N ∪ {0}. In practice, R is an observable random variable, while U , V , T , and S are unobservable

random variables. A false discovery is defined as an erroneously rejected true null hypothesis.

The proportion of false discoveries among all discoveries, often referred to as the False Discovery

Proportion (FDP hereafter), is then given by the random variable Q = V
R

, with Q = 0 when

R = 0. The FDR is defined as E(Q).

Table 1.1: Hypothesis Test Results

Fail to Reject H0 Reject H0 Total
H0 True U V N0

H0 False T S N −N0

N −R R N

Consider the multiple testing setup from before, N tests each with corresponding null

hypotheses, H0i, and p-values, Pi. Let P(1) ≤ P(2) ≤ ... ≤ P(N) be the ordered p-values and H0(i)

be the null hypothesis corresponding to P(i). Consider the following multiple testing procedure,

known as the Benjamini–Hochberg (abbreviated as BH hereafter) procedure:

Let k be the largest i such that

P(i) ≤
i

N
q. (1.2)

Then the BH procedure rejects all H0(i) for which i ≤ k. Otherwise it fails to reject H0(i).
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Theorem 1.2.1 (Benjamini & Hochberg (1995)). For independent test statistics and for any

configurations of false null hypotheses, the BH procedure controls the FDR at q.

I refer readers to the original paper by Benjamini and Hochberg, Benjamini & Hochberg

(1995), for a proof of this theorem. Furthermore, when all null hypotheses are true, FDR control

is equivalent to FWER control. And any implementation of FWER control also controls FDR,

though FDR control only controls FWER when all null hypotheses are true. In general, FDR

control is less stringent, thus an increase in power can be over FWER control can be expected

(Benjamini & Hochberg, 1995).

1.3 Dependence in Multiple Testing

Dependence in multiple testing, specifically correlated test statistics, was recognized as a

potential problem in Yekutieli & Benjamini (1999) where researches used a resampling-based

p-value adjustment method to ensure FDR control and improve test power. Through proof and

simulation studies, the resampling-based p-value adjustment is shown to control FDR under the

condition of dependent test statistics. (Yekutieli & Benjamini, 1999) Furthermore, in Benjamini

& Yekutieli (2001) researchers show that the Benjamini–Hochberg procedure controls the FDR

under the assumption of dependent test statistics. Other notable works in this area are (Storey,

2003) and (Genovese & Wasserman, 2002).

Thus we see that FDR control is possible even when we have correlation among our

variables. However, the above mentioned studies leave out a crucial detail in the problem of

multiple testing with dependence. In none of these studies do the authors consider the variance of

the FDR in their proofs or simulation studies. High variance in the FDR can cause considerable

problems for researchers, as a researcher could draw drastically different inference using different

data drawn from the same distribution with an arbitrary dependence structure.

Fan & Han (2017) developed a method for predicting achieved FDP for a given study that

incorporates the dependence structure of the data. Depending on how accurate their estimation is,

this result would allow other researchers to better estimate their achieved FDP under dependence
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and make better decisions when it comes to seeking out alternative multiple testing procedures.

In the following simulation studies, I show a significant increase in the variance of the FDR

for the Benjamini–Hochberg procedure when applied to data sets with highly correlated variables.

The methods I propose seek to reduce the variance of the FDR under assumption of dependence

among variables.

1.4 Motivation

The first method I implement was proposed in Majumder et al. (2009), and is a variation on the

Benjamini–Hochberg procedure (abbreviated as BH hereafter). In the study, researchers were

interested in uncovering which single nucleotide polymorphisms (SNPs) are significant in the

immune response triggered by a typhoid vaccine. SNPs are changes in single base pairs in DNA

sequences that are responsible for many phenotypic traits. The study ultimately used 2,040 SNPs

from 283 genes of 984 participants. Measurements for were taken before the vaccine was

administered and 28 days later, and the differences were then recorded as the antibody response

(AR). Researchers then used a log transform to induce Normality in the AR data.

Once the data had been converted to an approximately Normal form, the data was randomly

split into two groups, each containing 492 subjects. BH was then applied to the first group of

subjects to obtain a set of potentially significant SNPs. This smaller set of SNPs are then passed

on to another BH procedure to be ran on the second group of subjects. Thus another BH is ran on

this second group, but only on those SNPs that resulted in significance from the procedure ran on

the first group. By using this internally cross-validated Benjamini–Hochberg (ICV-BH) procedure

the authors of Majumder et al. (2009) intend to avoid the costs and complications associated with

fully replicating a separate study on a different population, and reference simulation studies that

show there is little loss of statistical power in doing so. The authors attribute the size of the study

to keeping the loss of power small.

My objective is to consider what effect the ICV-BH has on the FDR for multiple testing,

particularly at different levels of dependence among parameters. In Majumder et al. (2009) their
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approach is practical for their purposes, but perhaps there could be a significant reduction to the

FDR without the tests becoming too conservative, as in FWER control, and without significant

loss of power. Furthermore, dependence that may be present among SNPs is not considered in

Majumder et al. (2009), but could be present in similar applications that could make use of this

approach. Thus, I conduct a simulation study using the ICV-BH approach and compare results

with the usual BH under assumptions of independence and increasing levels of dependence

between parameters. In the simulation study, I show that this procedure does reduce the variance

of the FDR under increasing levels of independence.

Since the method above has shown promising results, I have also implemented a similar

method which I will call intersection Benjamini–Hochberg (I-BH). In this method, begin by

spliting the data into two split groups, as above. Next, run BH on each of the split groups to gain

two sets of rejected H0’s. Finally, select the intersection of H0’s rejected in both tests to be the

final set of rejected H0’s.

In simulation, I-BH also reduces the FDR and the variance of the FDR. However, I-BH does

appear to be the more conservative than the ICV-BH.

The following flow charts, Fig. 1.1 and Fig. 1.2, provide a visual representation for the

ICV-BH procedure and the I-BH procedure, respectively.
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Data Set

Split Group 1 Split Group 2

Rejected H0’s
for Split Group 1

Final Rejected H0’s

BH
H0’s

BH

Figure 1.1: Internally Cross-Validated Benjamini–Hochberg

Data Set

Split Group 1 Split Group 2

Rejected H0’s
for Split Group 1

Rejected H0’s
for Split Group 2

Intersection of Rejected H0’s

BH BH

H0’s H0’s

Figure 1.2: Intersection Benjamini–Hochberg
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Chapter 2

Methods

The goal of my simulation study is to evaluate the effect that internal cross-validation of BH has

on the FDR and FNR under increasing levels of dependence in the data. To accomplish this I have

simulated data sets that resemble typical gene expression data with increasing levels of

dependence. To each data set I apply the following multiple testing methods:

1. Benjamini–Hochberg

2. Internally Cross-Validated Benjamini–Hochberg

3. Intersection Benjamini–Hochberg

I then compare the results in terms of the following metrics:

1. False Discovery Rate

2. False Negative Rate

3. Misclassification Probability

All of the following simulations and analysis described were implemented using statistical

software (R Core Team, 2017). (Codes are provided in the appendix.)

2.1 Data Simulation

To generate my data, I simulate an experiment comparing two groups. In group 1 there are

subjects with some disease caused by a genetic abnormality, while group 2 subjects do not have

this disease and are assumed to have “normal” genes. As is common with gene expression data,

my data will have far more “genes” than subjects. This is often denoted in the literature as a

“large p, small n” problem or “wide” data. Furthermore, my simulated data will be sparse. That

means my generated data will have a greater number of parameters when compared to subjects

and only a few of those parameters will be significant. This construction was chosen because it

8



resembles some real life genetic expression data and assumptions about that data, in particular I

seek to emulate the prostate cancer dataset from Singh et al. (2002).

In my simulation, the number of subjects for each group is represented by n1 for group 1 and

n2 for group 2. The simulated gene expression levels for those subjects will be our variables in

the study, the number of which is given by p. Thus, each subject will have p gene expression

levels which are given as vectors sj with dimension p× 1 and j ∈ {1, 2, ..., n1 + n2}. Thus, when

the data is simulated the result is a p× (n1 + n2) matrix, call it Xp×(n1+n2).

Each element of sj then is a random variable given by either θ?k for signals or θi for noise,

with k ∈ {1, 2, ..., p?}, where p? is the number of signals, and i ∈ {1, 2, ..., p}. Signals

θ?k ∼ N(µ?k, 1) with hyperparameter µ?k ∼ N(0, ψ2), while the noise θi ∼ N(0, 1). For my signal

variables this choice of µ?k implies that θ?k ∼ N(0, σ2 + ψ2). This construction was chosen as it is

an established simulation model for genetics studies. (Scott & Berger, 2010) Then for subjects in

group 1, j ∈ {1, 2, ..., n1}, let θT1 = {θ?1, θ?2, ..., θ?p? , θp?+1, θp?+2, ..., θp}, while for subjects in

group 2, j ∈ {n1 + 1, n1 + 2, ..., n1 + n2}, let θT2 = {θ1, θ2, ..., θp}. Now sj ∼MVN(θh,Σp×p)

where h = 1 if j ≤ n1 and h = 2 otherwise, and Σp×p is the dispersion matrix of sj .

To generate data for X in the independent case (that is when Σ = Ip×p), I perform the

following steps:

1. Generate the hyperparameters µ?k and construct µj as described below:

(a) For j ≤ n1, µTj = {µ?1, µ?2, ..., µ?p? , 0, 0, ..., 0} with dimension 1× p.

(b) For j > n1, µTj = {0, 0, ..., 0} with dimension 1× p

2. For each sj , draw p samples from N(0, 1) to generate for the column vector zj .

3. Set sj = µj + zj .

4. Set X = [s1 s2 ... sn1+n2
].

And the X matrix, with xij ∈ sj for i ∈ {1, 2, ..., p} and j ∈ {1, 2, ..., n1 + n2}, is given by the
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following:

X =



x11 x12 . . . x1(n1+n2)

x21 x22 . . . x2(n1+n2)

...
... . . . ...

xp1 xp2 . . . xp(n1+n2)


(2.1)

For the dependent case, sj ∼ MVN(µj,Σp×p) (Note: µj = θh), where µj is the vector of

means as previously stated. Σ is assigned based on the desired dependence structure for our

simulation. To simulate X under this condition I use the Cholesky decomposition, Σ = LLT .

Then X is generated as follows:

1. Calculate L using the Cholesky decompostion.

2. Generate the mean vector, µj as described above.

3. For each sj , draw p samples from N(0, 1) to generate for the column vector zj .

4. Set sj = µj + Lzj .

5. Set X = [s1|s2| . . . |sn1+n2
].

The X matrix thus generated has a similar form to the X matrix given above. Using the

methods of simulation described above, I will sample 200 data sets under 21 levels of increasing

dependence for a total of 4,200 data sets. Having 200 data sets at each level of dependence will

allow for reliable calculations of FDR, FNR, and misclassification probability at each level. Each

data set will have 1,000 parameters and 100 subjects (n1 = 50 and n2 = 50), with sparsity set to

10%. These values mirror a typical scenario under which the BH procedure would be used

without being so large that replicated simulations become too time consuming. The dependence

10



structure chosen is given by the following:

Σ =



1 ρ ρ2 . . . ρp−1

ρ 1 ρ . . . ρp−2

ρ2 ρ 1 . . . ρp−3

...
...

... . . . ...

ρp−1 ρp−2 ρp−3 . . . 1


(2.2)

Where ρ = {0, 0.05, 0.1, ..., 0.95, 0.99} to give the 21 levels of dependence, with ρ = 0 being the

independent case. This dependence structure was chosen as neighboring genes tend to have some

correlation with one another. Values for ρ were chosen to allow for tracking changes in the FDR,

FNR, and misclassification probability at a reasonable resolution.

2.2 Analysis

With data sets simulated as described in the previous section, I now apply the multiple testing

methods described in Chapter 1 to them. For each method, two sample t-tests are used to obtain

p-values for variables θ1 − θ2, where θ1 represents the vector of population means for the

“cancer” group and θ2 represents the vector of population means for the “control” group. t-tests

should be used in this case as we are looking for any significant difference between the means of

the two groups. As the simulation is meant to mimic a real life experiment I use the t-test instead

of a normal test, as the variance is not typically known.

Note also that in the simulations the columns are the observations and the rows relate to the

variables of interest. This should follow from how the matrices were constructed, and mimic the

prostate cancer dataset in Efron (2010). So the tests will compare row means for the columns

belonging to the two groups.

Benjamini–Hochberg: For the BH procedure, each data set is split into two groups with the

first n1 = 50 columns in group 1, and the next n2 = 50 columns in group 2. Then t-tests are

performed on each row with the following hypothesis, H0i : θ1i − θ2i = 0 and H1iθ1i − θ2i 6= 0,
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for i in {1, 2, .., p}, to obtain p-values for each of the p variables. Using these p-values, the BH

procedure is applied and significant variables are identified. The following values are then

calculated: false discovery proportion (FDP), false negative proportion (FNP), misclassification

proportion (MP), and number of significant variables (NSV). Finally, for each level of

dependence, these values are averaged across the 200 hundred data sets to arrive at estimates for

the false discovery rate (FDR), false negative rate (FNR), misclassification rate (MR), and

average number of significant variables (ANSV).

Internally Cross-Validated Benjamini–Hochberg: For the ICV-BH procedure, each data

set is split into two groups with the first n1 = 50 columns in group 1, and the next n2 = 50

columns in group 2. These groups are then split into two sub-groups with 25 columns each, which

I will refer to as S1, S2, S3, and S4. Then sub-groups S1 and S2 are matrices formed by selecting

25 columns each from group 1, without replacement. Similarly, sub-groups S3 and S4 are matrices

formed by selecting 25 columns each from group 2, without replacement. Then t-tests comparing

S1 and S3 are performed on each row with the following hypothesis, H0i : θ1i − θ2i = 0 and

H1iθ1i − θ2i 6= 0, for i in {1, 2, .., p}, to obtain p-values for each of the p variables. Using these

p-values, the BH procedure is applied and significant variables are identified. Let p? be the vector

of row indices for the variables thus identified. Now, t-tests comparing S2 and S4 are performed

on the p? rows with hypotheses as described above to obtain p-values for each variable referenced

by the indices p?. Using these p-values, the BH procedure is applied a second time and the final

round of significant variables are identified. The following values are then calculated: FDP, FNP,

MP, and NSV. Finally, for each level of dependence, these values are averaged across the 200

hundred data sets to arrive at estimates for the FDR, FNR, MR, and ANSV.

Intersection Benjamini–Hochberg: For the I-BH procedure, each data set is split into two

groups with the first n1 = 50 columns in group 1, and the next n2 = 50 columns in group 2. These

groups are then split into two sub-groups with 25 columns each, which I will refer to as S1, S2,

S3, and S4. Then sub-groups S1 and S2 are matrices formed by selecting 25 columns each from

group 1, without replacement. Similarly, sub-groups S3 and S4 are matrices formed by selecting
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25 columns each from group 2, without replacement. Then t-tests comparing S1 and S3 are

performed on each row with the following hypothesis, H0i : θ1i − θ2i = 0 and H1iθ1i − θ2i 6= 0,

for i in {1, 2, .., p}, to obtain p-values for each of the p variables. Using these p-values, the BH

procedure is applied and significant variables are identified. Let p?1 be the vector of row indices

for the variables thus identified. Then, t-tests comparing S2 and S4 are performed on each row

with hypotheses as described above to obtain p-values for each of the p variables. Using these

p-values, the BH procedure is applied a second time and significant variables are identified. Let

p?2 be the vector of row indices for the variables thus identified. Finally, let p?1 ∩ p?2 = p? be the

indices for the selected variables by the I-BH procedure. The following values are then calculated:

FDP, FNP, MP, and NSV. Finally, for each level of dependence, these values are averaged across

the 200 hundred data sets to arrive at estimates for the FDR, FNR, MR, and ANSV.

Choice of FDR Control: For this simulation study, I am choosing to control the FDR at a

rate of q = 0.3. The reason for this choice stems from work in Datta (2014), where it is argued

that for the ICV-BH that the FDR is controlled at a rate of q2. The choice of q = 0.3 was made

after some trial and error with the simulations along with desire to use a common FDR control of

q = 0.1. Since the choice of q = 0.3 produced meaningful results from our simulated data and

q2 = 0.32 = 0.09 was close to our desired FDR control for the ICV-BH, q = 0.3 was used.

Calculations: The following calculations are for FDP, FNP, MP, and NSV given using

variables from Table 1.1. Recall that the total number of tests is given by N , the number of tests

where H0 is true and not rejected is given by the random variable U , where H0 is false and not

rejected is given by the random variable T , where H0 is true and rejected is given by the random

variable V , and where H0 is false and is rejected is given by the random variable S. Then

R = S + V gives us the total number of tests where the H0 is rejected, N − S gives the total

number of tests where the H0 is not rejected, and N −N0 gives the total number of false null

hypotheses. All of U , V , T , S, R, N , and N0 are in N ∪ {0}.
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FDP =


V
R

R 6= 0

0 R = 0

(2.3)

FNP =


T

N−R R 6= N

0 R = N

(2.4)

MP =
T + V

N
(2.5)

NSV =R (2.6)

As stated above, FDR, FNR, MR, and ASNV are calculated by taking averages of FDP, FNP,

MP, and SNV, respectively, across the 200 data sets for each dependence level.

Visualization: Finally, all of these calculated values are used to create graphs of the FDR,

FNR, MR, and ASNV across the different levels of dependence with the FDP, FNP, MP, and SNV

calculations, respectively, being used to generate confidence bands for each estimate.

Furthermore, box plots of the FDP, FNP, MP, and SNV are also produced to show the spread of

those values along with the extremes that are produced in the simulation study.

Software Utilized: All computation was done using R Core Team (2017) and the following

packages: Microsoft & Weston (2017), Corporation & Weston (2017), Wickham (2009), and

Auguie (2017)

2.3 Parallel Processing

To reduce computation time for this simulation study, I have made use of parallel processing

packages in R. The computer I’ve used for all my computations is a Surface Pro 4 with an Intel

Core i5-6300U Processor. As an example of the performance increase when parallel processing, I
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compare the processing times for the parallel and nonparallel versions of the “foreach” function

when generating the independent data sets (as previously described) and analyzing all data sets

generated using the BH (as previously described). All time measurements are in seconds; user

and system time relate to CPU processing time, while elapsed time is the total time taken to run a

procedure. Note that when user + system ¿ elapsed, then there is likely something other than

computations slowing the process, and further troubleshooting would be required to find ways to

reduce the elapsed time.

For the data generation the times are:

Table 2.1: Data Generation: Processing times for generating 200 datasets, as described in
Section 2.1, under the assumption of independent variables.

User System Elapsed
Non-parallel 2.57 s 0.17 s 3.54 s

Parallel 0.39 s 0.22 s 2.77 s

For data analysis the times are:

Table 2.2: Data Analysis: Processing times for analyzing all 4200 generated data sets using the
BH, as described in Section 2.2.

User System Elapsed
Non-parallel 114.33 s 3.32 s 123.00 s

Parallel 39.2 s 24.98 s 154.75 s
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Chapter 3

Results

3.1 An Example Data Set

For a quick glimpse at how the different procedures perform, I first consider how each procedure

performs on a single data set. I chose to use the first data set generated using the simulation

methods described in Section 2.1. That is, the first data set generated with independent variables.

The false discovery proportion (FDP), false negative proportion (FNP), misclassification

proportion (MP), and number of significant variables (NSV) found by my analysis are reported in

Table 3.1. At first glance, it would seem that the internally cross-validated Benjamini–Hochberg

(ICV-BH) is outperforming both the Benjamini–Hochberg procedure (BH) and the Intersection

Benjamini–Hochberg (I-BH) with the lowest FNP and MP, however I will show later that the

FNR on average actually increases for both the ICV-BH and I-BH methods.

Table 3.1: Results for Single Data Set Generated using ρ = 0: This table includes the
calculated FDP, FNP, MP, and NSV for a single data set with independent variables using

calculations described in the Section 2.2.

FDP FNP MP NSV
Benjamini–Hochberg 0.237 0.015 0.040 114

Internally Cross-Validated 0.011 0.0143 0.014 88
Intersection 0.000 0.0217 0.020 80

Interestingly, the I-BH method resulted in FDP = 0 in this example. This occurred because

the split groups for this method did not share any false discoveries. Table 3.2 provides a list of

indices for falsely rejected θi’s in each of the split groups. Notice that there are no shared false

rejections. While this did occur in some data sets, the majority of the data sets produced FDP

values greater than zero. This particular problem was more pervasive when smaller values of q for

the BH procedures were chosen, hence the choice of q = 0.3 was made in part to address this

issue.
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Table 3.2: False Discoveries in Split Groups: This table lists the row indices for the false
discoveries found in each split group in the I-BH. Notice that no indices are common between the

two groups.

False Discoveries for Split Group 1
140, 168, 197, 218, 258, 270, 293, 363, 415, 445, 462, 519, 527, 562, 599, 614, 697, 706,

708, 715, 806, 812, 938, 993
False Discoveries for Split Group 2

108, 146, 180, 187, 221, 262, 264, 354, 378, 393, 400, 412, 468, 503, 524, 526, 533, 548, 557,
586, 603, 605, 628, 636, 658, 679, 711, 712, 752, 753, 804, 842, 854, 870, 913, 963, 981

3.2 Simulation Study Results

Moving on from the example data set, the following figures summarize my analysis of the

simulated data sets. For each figure, graphs are given for the above calculations after performing

each procedure. For each graph, the calculated values from the data sets are plotted against

increasing levels of dependence, ρ. These graphs present how the calculated values change

relative to changes in ρ. The 90% confidence bands are given to provide a visual representation of

the variance of each value.

For each graph in Fig. 3.1 the False Discovery Rate (FDR) is plotted as the solid line, and the

90% confidence bands are constructed by the 95% and 5% quantiles of the FDP calculations at

each ρ. Figure 3.2 provides plots of the maximum and minimum FDP values obtained by each

procedures at each value of ρ.

Comparing the graphs in Fig. 3.1, the confidence bands for the ICV-BH and I-BH are much

narrower than that of the BH. This suggests that the variance of the FDR is being greatly reduced.

Furthermore, in both the ICV-BH and I-BH the FDR is much lower than that of the BH. This

reduction in FDR is not problematic, so long as there is not too large a decrease in power. Finally,

we see that the I-BH, having the most reduced FDR, is the most conservative test of the three.

For the minimum and maximum lines in Fig. 3.2, note that the maximum values obtained by

the ICV-BH and I-BH remain much lower than the BH. This suggests that even in extreme cases,

the FDR of the ICV-BH and I-BH should be more reliable than the BH. However, the minimum

lines for the FDR of the ICV-BH and I-BH are constant at zero, while the minimum line for the
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BH only reaches zero when ρ > 0.9. This result further suggests these methods are more

conservative than the BH.

For each graph in Fig. 3.3 the False Negative Rate (FNR) is plotted as the solid line, and the

90% confidence bands are constructed by the 95% and 5% quantiles of the FNP calculations at

each ρ.

Comparing the graphs in Fig. 3.3, the confidence bands for the ICV-BH and I-BH are wider

than that of the BH. This suggests that the variance of the FNR is larger for the new methods.

Also, the FNR for the BH is smaller than that of the ICV-BH and I-BH, with the entire confidence

band of the I-BH being greater than the confidence band of the BH. This confirms the decrease in

power anticipated by the reduced FDR of the ICV-BH and I-BH, with the I-BH having the

greatest reduction in power of the two. I consider whether or not this decrease in power is

acceptable in the Discussion chapter 4.

For each graph in Fig. 3.4 the Misclassification Rate (MR) is plotted as the solid line, and the

90% confidence bands are constructed by the 95% and 5% quantiles of the MP calculations at

each ρ.

Comparing the graphs in Fig. 3.4, the confidence bands for the ICV-BH and I-BH are much

narrower than that of the BH. This suggests that the variance of the MR is much smaller for the

new methods. Given the analysis of the other figures, this result is not surprising. Since the data

I’ve simulated is sparse, more misclassifications could occur from false discoveries than from

false negatives. Since the new methods reduce the FDR, then the FDR’s contribution to the MR

would be reduced, and since the number of true negatives is small (sparse data), the increase in

FNR would have little effect on the MR.

For each graph in Fig. 3.5 the average number of significant variables (ANSV) found is

plotted as the solid line, and the 90% confidence bands are constructed by the 95% and 5%

quantiles of the SNV calculations at each ρ.

For Fig. 3.5, observe that the ANSV for the ICV-BH and I-BH is underestimating the true

NSV, while the BH is overestimating the true NSV. However, the confidence bands for the
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ICV-BH and I-BH are more narrow than those for the BH. This suggests that while the ICV-BH

and I-BH will likely miss some significant variables, there is less variation in the number of

variables selected when compared with the results of the BH. This result considered with the

reduction in FDR and increase in FNR suggests, that a researcher may more reliably avoid false

discoveries with the ICV-BH and I-BH when compared to the BH, but he would be more likely to

miss some significant variable. Indeed, since the confidence band for I-BH and almost all the

confidence band for ICV-BH sit below 100, these methods, for my simulated data, will not be able

to detect all of the significant variables, while the BH still could based on its ANSV confidence

band.
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Figure 3.1: False Discovery Rate: False discovery rate with 90% Confidence Band for the BH,
ICV-BH, and I-BH. ρ refers to the value in [0, 1) representing correlation between variables, and

FDP is the calculated false discovery proportion. The solid line is the FDR for simulations at each
ρ, and the shaded area depicts the area between the 5% and 95% percentile for FDP for the

simulations at each ρ.
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Figure 3.2: False Discovery Proportion Extreme Values: Extreme values for the false discovery
proportion for the BH, ICV-BH, and I-BH. ρ refers to the value in [0, 1) representing correlation

between variables, and FDP is the calculated false discovery proportion. The top solid line
represents the max FDP calculated among simulations at values for ρ, while the bottom solid line

represents the minimum FDP calculated among simulations at values for ρ.
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Figure 3.3: False Negative Rate: False negative rate with 90% Confidence Band for the BH,
ICV-BH, and I-BH. ρ refers to the value in [0, 1) representing correlation between variables, and
FNP is the calculated false negative proportion. The solid line is the FNR for simulations at each
ρ, and the shaded area depicts the area between the 5% and 95% percentile for FNP for the

simulations at each ρ.
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Figure 3.4: Misclassification Rate: Misclassification rate with 90% Confidence Band for the BH,
ICV-BH, and I-BH. ρ refers to the value in [0, 1) representing correlation between variables, and

MP is the calculated misclassification proportion. The solid line is the MR for simulations at each
ρ, and the shaded area depicts the area between the 5% and 95% percentile for MP for the

simulations at each ρ.
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Figure 3.5: Number of Significant Variables: Number of significant variables with 90%
Confidence Band for the BH, ICV-BH, and I-BH. ρ refers to the value in [0, 1) representing

correlation between variables, and discoveries are the number of significant variables detected.
The solid line is the average number of significant variables for simulations at each ρ, and the

shaded area depicts the area between the 5% and 95% percentile for number of significant
variables for the simulations at each ρ.
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3.3 Application

Since my data simulations were based upon the prostate cancer data set from Singh et al. (2002),

it would be appropriate to compare performance of the different procedures on this data set. The

prostate cancer dataset is a 6033× 102 matrix, organized so that each of the 6033 gene expression

levels recorded are along the rows, and the 102 subjects are along the columns. Of the 102, 50

subjects are the controls (non-cancer patients), while 52 subjects have cancer. Thus our objective

will be to find significantly different genes between the two groups. So I first ran the regular BH,

as described above, with q = 0.3, on the dataset. This resulted in the choice of 150 significant

genes.
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Figure 3.6: Histograms for Selected Genes: Histograms for the number of selected genes
determined by applying the ICV-BH and the I-BH to the prostate cancer dataset. Since both
procedures require the construction of subgroups before selection of significant genes, the

subjects that make up those subgroups were randomly assigned to appropriate subgroups as
described in Section 2.2. This procedure was random assignment to subgroups was then

replicated 300 times, with the procedures being ran each time, to produce these histograms.
Results are sorted into bins based on the number of genes selected by the procedure ran.

Recall that to apply the ICV-BH and the I-BH to the data set, the two groups of subjects, the

control group and cancer group, must be split into two subgroups. In the simulations, I decided on

the same split for each dataset, but for this application, I can consider multiple splits and look at

the distribution of the number of selected genes from those splits. So the 50 subjects of the
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control group were then randomly assigned to exactly one of two subgroups, such that each

subgroup had 25 members. The same was done for the 52 subjects of the cancer group, except

that each subgroup had 26. After the subgroups were made, the ICV-BH and the I-BH were ran

on the data as described above, with q = 0.3. Since we could randomly assign these groups in

many different ways, this process of subgroup selection was repeated 300 times and results are

presented as a histogram in Fig. 3.6.

On average, the ICV-BH selected 5.97 genes, and the I-BH selected 5.96 genes. Much like

their averages, the histograms for the ICV-BH and the I-BH look very similar to one another.

While this result is a bit surprising, it is observed that, as expected, the resulting number of

selected genes is much more conservative with these procedures, when compared to the BH.
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Chapter 4

Discussion

As stated in chapter 1, the Benjamini–Hochberg procedure (BH) is currently the gold standard for

large scale simultaneous hypothesis testing of sparse data. Especially if independence between

variables may be assumed. However, I have shown that under increasing levels of dependence,

the BH’s results become less precise. That is, the variance of the False Discover Rate (FDR)

greatly increases as the correlation, ρ, between variables increases.

For my simulation study, the variance of the FDR for the BH begins to noticeably increase as

ρ grows larger than 0.5. In order to reduce this variance I have proposed using the Internally

Cross-Validated Benjamini–Hochberg procedure (ICV-BH) and the Intersection

Benjamini–Hochberg procedure (I-BH). The results of my simulation study show that the

variance of the FDR was reduced for all values of ρ, but with an increase to False Negative Rate

(FNR) and the variance of the FNR. This suggests that under the proposed procedures, a

researcher may be more sure of the procedures’ selected variables, but there is a greater risk that

some variable that should have been selected was not selected.

What is clear from my simulation study is that both the ICV-BH and the I-BH are more

conservative methods. Both methods trade a lower FDR with a lower variance for a larger FNR

with a larger variance, with the I-BH generating a larger FNR, but with the ICV-BH leading to a

larger variance for FNR. Thus a researcher using these methods should be less confident that all

significant variables were found.

So researchers considering these methods should weigh the impact of making these two types

of errors. Under the same FDR control, q, both of the new methods give strong control of the

FDR and it’s variance, but the price is an increase FNR and it’s variance. Should a researcher

need more certainty regard the FDR among highly correlated data, then both methods are strong

candidates for the job.

Furthermore, should a researcher be willing to accept a larger FDR, then q could be increased

further. Both methods, as shown, lead to a larger FNR and much lower FDR than the original BH,
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thus one may consider increasing q for both the ICV-BH and I-BH so that the desired FDR is

more inline with what is expected in the BH. My choice of q = 0.3 was made considering that the

FDR should be controlled at approximately q2 for the ICV-BH and the I-BH. This choice of q

should be lead these procedures to control FDR at q2 ≈ 0.1. With this in mind, it may also be

useful to compare the ICV-BH and I-BH with q = 0.3 against the BH with q = 0.1.

4.1 Future Work

Thus far I have focused on comparing the proposed methods, the ICV-BH and I-BH, with the BH.

As the BH is the most widely used multiple testing procedure, this comparison is appropriate,

however there are other methods drawing on Bayesian statistics that would be worthwhile to

consider. Typically Bayesian methods are applied more for estimation than for detecting

significant variables, but variable selection in a particular model can be seen as similar to testing

for variable significance. Thus in the future comparing the outcomes of variable seleciton with

Bayesian technique to the outcomes of the proposed methods would be useful.

Furthermore, many of the Bayesian techniques also rely independent variable assumption,

thus adapting those techniques to dependent variable cases should be very interesting. There is

theoretical support for taking this approach, however computation involving dependent variables

in the Bayesian framework can become very cumbersome. If this computational problem can be

overcome, developing such methods looks very promising.

25



Bibliography

Auguie, Baptiste. 2017. gridExtra: Miscellaneous Functions for ”Grid” Graphics. R package
version 2.3.

Benjamini, Yoav, & Hochberg, Yosef. 1995. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B
(Methodological), 289–300.

Benjamini, Yoav, & Yekutieli, Daniel. 2001. The control of the false discovery rate in multiple
testing under dependency. Annals of Statistics, 1165–1188.

Corporation, Microsoft, & Weston, Steve. 2017. doParallel: Foreach Parallel Adaptor for the
’parallel’ Package. R package version 1.0.11.

Datta, Jyotishka. 2014 (8). Some Theoretical and Methodological Aspects of Multiple Testing,
Model Selection and Related Areas. Ph.D. thesis, Purdue University, West Lafayette, Indiana.

Efron, Bradley. 2010. Large-scale inference. Institute of Mathematical Statistics (IMS)
Monographs, vol. 1. Cambridge University Press, Cambridge. Empirical Bayes methods for
estimation, testing, and prediction.

Fan, Jianqing, & Han, Xu. 2017. Estimation of the false discovery proportion with unknown
dependence. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(4),
1143–1164.

Genovese, Christopher, & Wasserman, Larry. 2002. Operating characteristics and extensions of
the false discovery rate procedure. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 64(3), 499–517.

Majumder, Partha P, Staats, Herman F, Sarkar-Roy, Neeta, Varma, Binuja, Ghosh, Trina, Maiti,
Sujit, Narayanasamy, K, Whisnant, Carol C, Stephenson, James L, & Wagener, Diane K. 2009.
Genetic determinants of immune-response to a polysaccharide vaccine for typhoid. The HUGO
Journal, 3(1-4), 17–30.

Microsoft, & Weston, Steve. 2017. foreach: Provides Foreach Looping Construct for R. R
package version 1.4.4.

R Core Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria.

Scott, James G, & Berger, James O. 2010. Bayes and empirical-Bayes multiplicity adjustment in
the variable-selection problem. Annals of Statistics, 2587–2619.

Singh, Dinesh, Febbo, Phillip G, Ross, Kenneth, Jackson, Donald G, Manola, Judith, Ladd,
Christine, Tamayo, Pablo, Renshaw, Andrew A, D’Amico, Anthony V, Richie, Jerome P,
Lander, Eric S, Loda, Massimo, Kantoff, Phillip W, Golub, Todd R, & Sellers, William R. 2002.
Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 1(2), 203–209.

26



Storey, John D. 2003. The positive false discovery rate: a Bayesian interpretation and the q-value.
Annals of Statistics, 31(6), 2013–2035.

Van Steen, Kristel, McQueen, Matthew B, Herbert, Alan, Raby, Benjamin, Lyon, Helen, DeMeo,
Dawn L, Murphy, Amy, Su, Jessica, Datta, Soma, Rosenow, Carsten, Christman, Michael,
Silverman, Edwin K, Laird, Nan M, Weiss, Scott T, & Lange, Christoph. 2005. Genomic
screening and replication using the same data set in family-based association testing. Nature
Genetics, 37(7), 683.

Wickham, Hadley. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New
York.

Yekutieli, Daniel, & Benjamini, Yoav. 1999. Resampling-based false discovery rate controlling
multiple test procedures for correlated test statistics. Journal of Statistical Planning and
Inference, 82(1-2), 171–196.

27



Appendix A

R Code

## Load L i b r a r i e s t o be used .

l i b r a r y ( ” p a r a l l e l ” ) ## For p a r a l l e l p r o c e s s i n g
l i b r a r y ( ” f o r e a c h ” ) ##
l i b r a r y ( ” d o P a r a l l e l ” ) ##
l i b r a r y ( ” g g p l o t 2 ” ) ## For da ta v i s u a l i z a t i o n
l i b r a r y ( ” g r i d E x t r a ” ) ##

## S e t Working D i r e c t o r y

setwd ( ” Your D i r e c t o r y ” )

## Genera te random means − mu

s e t . s e ed ( 1 3 )
randmu <− f u n c t i o n ( p , prop , var ){

## p − number o f p a r a m e t e r s
## prop − p r o p o r t i o n o f non−n u l l p a r a m e t e r s
## var − v a r i a n c e f o r mean g e n e r a t i o n

mu <− c ( rnorm ( p∗prop , 0 , s q r t ( var ) ) , rep ( 0 , p∗(1−prop ) ) )
re turn (mu)

}

## I n d e p e n d e n t Data Genera to r

i n d y d a t a <− f u n c t i o n (N, n , s i g means ){
## N − number o f da ta s e t s
## n − number o f samples
## s i g means − v e c t o r o f s i g n a l means

p <− l e n g t h ( s i g means )

## Genera te sample from mu + N( 0 , Ip )

## I n i t i a l i z e v a r i a b l e s
sim <− l i s t ( rep ( matrix ( rep ( 0 , n∗p ) , nrow = p , nco l = n ) , N) )
samples <− matrix ( rep ( 0 , n∗p ) , nrow = p , nco l = n )

# S e t up f o r p a r a l l e l m a t r i x g e n e r a t i o n
no c o r e s <− d e t e c t C o r e s ()−1

RNGkind ( ”L ’ Ecuyer−CMRG” )
c l <− m a k e C l u s t e r ( no c o r e s )
r e g i s t e r D o P a r a l l e l ( c l )
c l u s t e rS e tR NG S t r ea m ( c l , 13)

# g e n e r a t e da ta
sim <− f o r e a c h ( i = 1 :N)% dopar%{

sample s <− ( matrix ( c ( rep ( s i g means , n / 2 ) , rep ( 0 , p∗n / 2 ) ) ,
p , n , byrow = FALSE)

+ matrix ( rnorm ( p∗n ) , p , n ) )
sample s

}
s t o p C l u s t e r ( c l )

## Add v e c t o r t o i n d i c a t e which means are non−z e r o .

i n d i c e s <− which ( s i g means ! = 0)
s i g means [ i n d i c e s ] = i n d i c e s
sim <− l i s t ( s i g means , sim )
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## R e t ur n v e c t o r f o r non−z e r o means and g e n e r a t e d da ta

re turn ( sim )
}

## Dependent da ta g e n e r a t o r

r h o t o p <− f u n c t i o n (N, n , s i g means , rho ){
## N − number o f da ta s e t s
## n − number o f samples
## s i g means − v e c t o r o f s i g n a l means
## rho − c o r r e l a t i o n

p <− l e n g t h ( s i g means )

## Genera te t h e d i s p e r s i o n m a t r i x D

D = rho ˆ abs ( matrix ( c ( 0 : ( p ˆ2−1)) , p , p , byrow = TRUE)%%p −
matrix ( c ( 0 : ( p ˆ2−1) ) , p , p , byrow = FALSE)%%p )

## Take t h e C h o l e s k y d e c o m p o s i t i o n o f D

CD <− cho l (D)

## Genera te sample from mu + CD∗N( 0 , Ip )

sim <− l i s t ( rep ( matrix ( rep ( 0 , n∗p ) , nrow = p , nco l = n ) , N) )
samples <− matrix ( rep ( 0 , n∗p ) , nrow = p , nco l = n )

no c o r e s <− d e t e c t C o r e s ()−1

RNGkind ( ”L ’ Ecuyer−CMRG” )
c l <− m a k e C l u s t e r ( no c o r e s )
r e g i s t e r D o P a r a l l e l ( c l )
c l u s t e rS e tR NG S t r ea m ( c l , 13)

sim <− f o r e a c h ( i = 1 :N)% dopar%{
sample s <− ( matrix ( c ( rep ( s i g means , n / 2 ) , rep ( 0 , p∗n / 2 ) ) ,

p , n , byrow = FALSE) +
CD%∗%matrix ( rnorm ( p∗n ) , p , n ) )

sample s
}
s t o p C l u s t e r ( c l )

## Add v e c t o r t o i n d i c a t e which means are non−z e r o .

i n d i c e s <− which ( s i g means ! = 0)
s i g means [ i n d i c e s ] = i n d i c e s
sim <− l i s t ( s i g means , sim )

## R e t ur n v e c t o r f o r non−z e r o means and g e n e r a t e d da ta

re turn ( sim )
}

## Genera te and save da ta s e t s

p <− 1000
n <− 100
N <− 200
prop <− . 1
var <− l o g ( 1 0 0 0 )

s i g means <− randmu ( p , prop , var )
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f o r ( i i n c ( seq ( 0 , 9 5 , by = 5 ) , 9 9 ) ){
i f ( i ==0){

data t r i n d <− i n d y d a t a (N, n , s i g means )
} e l s e {

rho <− i / 100
data t r i n d <− r h o t o p (N, n , s i g means , rho )

}
save ( data t r i n d , f i l e = p a s t e ( ” d a t a rho ” , i , sep = ” ” ) )

}

## F u n c t i o n s t o be s o u r c e d as BHFun . R

## Perform Benjamin i−Hochberg p r o c e d u r e

benhoch <− f u n c t i o n ( p , q ){
i f ( max ( p)<=q ){

re turn ( 1 : l e n g t h ( p ) )
} e l s e {

op <− order ( p )
o r d e r p <− c ( )
f o r ( i i n 1 : l e n g t h ( p ) ){

o r d e r p <− c ( o rde rp , p [ op [ i ] ] )
}
p i nd ex <− 1
whi le ( o r d e r p [ p i nd ex ] <= p i nd ex / l e n g t h ( p ) ∗q ){

p i nd ex <− p i nd ex + 1
}
a l t i n d e x <− c ( op [ 1 : ( p index −1) ] )
re turn ( s o r t ( a l t i n d e x ) )

}
}

## C a l c u l a t e f a l s e d i s c o v e r y p r o p o r t i o n .

Fdp <− f u n c t i o n ( pind , t r i n d ){
f l s d s c <− l e n g t h ( p ind ) − sum ( p ind %i n% t r i n d )
p r o p o r t i o n <− i f e l s e ( l e n g t h ( p ind )==0 , 0 , ( f l s d s c / l e n g t h ( p ind ) ) )
re turn ( p r o p o r t i o n )

}

## C a l c u l a t e f a l s e n e g a t i v e p r o p o r t i o n .

Fnp <− f u n c t i o n ( pind , t r i n d ){
t r a l t <− max ( t r i n d )
f l s n e g <− t r a l t − sum ( p ind %i n% t r i n d )
p r o p o r t i o n <− i f e l s e ( l e n g t h ( t r i n d )== l e n g t h ( p ind ) , 0 ,

f l s n e g / ( l e n g t h ( t r i n d )− l e n g t h ( p ind ) ) )
re turn ( p r o p o r t i o n )

}

## C a l c u l a t e m i s c l a s s i f i c a i t o n p r o p o r t i o n

m i s c l a s s p <− f u n c t i o n ( pind , t r i n d ){
p <− l e n g t h ( t r i n d )
t r a l t <− max ( t r i n d )
m i s c l a s s <− l e n g t h ( p ind ) + t r a l t − 2∗sum ( p ind %i n% t r i n d )
p r o p o r t i o n <− i f e l s e ( p ==0 , 0 , m i s c l a s s / p )
re turn ( p r o p o r t i o n )

}

## Run t− t e s t and r e t u r n p−v a l u e .

t p v a l <− f u n c t i o n ( x , y = NULL){
v <− x
n <− l e n g t h ( v )
i f ( i s . n u l l ( y ) ){

x <− v [ 1 : ( n / 2 ) ]
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y <− v [ ( n / 2 + 1 ) : n ]
}
xn <− l e n g t h ( x )
yn <− l e n g t h ( y )
xba r <− mean ( x )
yba r <− mean ( y )
s s x <− sum ( ( x−xba r ) ˆ 2 )
s s y <− sum ( ( y−yba r ) ˆ 2 )
t <− ( xbar−yba r ) / s q r t ( ( s s x + s s y ) / ( xn+yn−2)∗ (1 / xn+1 / yn ) )
p <− 2∗pt ( abs ( t ) , df = yn+xn−2, lower . t a i l = FALSE)
re turn ( p )

}

## I m p o r t a n t ! S e t work ing d i r e c t o r y .

setwd ( ”C : /UARK Work / T h e s i s P r o j e c t / Ben−Hoch P r o j e c t / T h e s i s ” )

source ( ”BHFun . R” )

## I n i t i a l Comparison on One Data S e t

load ( f i l e = ” d a t a rho 0 ” )
t r i n d <− data t r i n d [ [ 1 ] ]
data l i s t <− data t r i n d [ [ 2 ] ]
data <− data l i s t [ [ 1 ] ]
p <− l e n g t h ( data [ , 1 ] )
n <− l e n g t h ( data [ 1 , ] )
q <− . 3

grp1 <− data [ , c ( 1 : ( n / 4 ) , ( n / 2 + 1 ) : ( 3 ∗n / 4 ) ) ]
grp2 <− data [ , c ( ( n / 4 + 1 ) : ( n / 2 ) , ( 3 ∗n / 4 + 1 ) : n ) ]

## V a n i l l a BH

p v a l <− c ( rep ( 0 , p ) )

p v a l <− apply ( data , 1 , FUN = t p v a l )

p ind BH <− benhoch ( pva l , q )

m i s c l a s s BH <− c ( Fdp ( p ind BH, t r i n d ) , Fnp ( p ind BH, t r i n d ) ,
m i s c l a s s p ( p ind BH, t r i n d ) , l e n g t h ( p ind BH) )

## ICVBH

p v a l 1 <− c ( rep ( 0 , p ) )
p v a l 2 <− c ( )

p v a l 1 <− apply ( grp1 , 1 , FUN = t p v a l )
p ind grp1 <− benhoch ( pva l1 , q )

p v a l 2 <− apply ( g rp2 [ p ind grp1 , ] , 1 , FUN = t p v a l )
p ind ICVBH <− benhoch ( pva l2 , q )

m i s c l a s s ICVBH <− c ( Fdp ( p ind ICVBH , t r i n d ) , Fnp ( p ind ICVBH , t r i n d ) ,
m i s c l a s s p ( p ind ICVBH , t r i n d ) , l e n g t h ( p ind ICVBH ) )

## I n t e r s e c t i o n BH

p v a l 1 <− c ( rep ( 0 , p ) )
p v a l 2 <− c ( rep ( 0 , p ) )

p v a l 1 <− apply ( grp1 , 1 , FUN = t p v a l )
p ind grp1 <− benhoch ( pva l1 , q )

p v a l 2 <− apply ( grp2 , 1 , FUN = t p v a l )
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p ind grp2 <− benhoch ( pva l2 , q )

p ind intBH <− unique ( s o r t ( c ( p ind grp1 [ which ( p ind grp1 %i n% pind grp2 ) ] ,
p ind grp2 [ which ( p ind grp2 %i n% pind grp1 ) ] ) ) )

rmpind <− s o r t ( c ( p ind grp1 [−which ( p ind grp1 %i n% pind grp2 ) ] ,
p ind grp2 [−which ( p ind grp2 %i n% pind grp1 ) ] ) )

m i s c l a s s intBH <− c ( Fdp ( p ind intBH , t r i n d ) , Fnp ( p ind intBH , t r i n d ) ,
m i s c l a s s p ( p ind intBH , t r i n d ) , l e n g t h ( p ind intBH ) )

## R e s u l t s f o r One Data S e t

m i s c l a s s <− rbind ( m i s c l a s s BH, m i s c l a s s ICVBH , m i s c l a s s intBH )
colnames ( m i s c l a s s ) <− c ( ”FDP” , ”FNP” , ” M i s c l a s s i f i c a t i o n ” , ” D i s c o v e r i e s ” )
rownames ( m i s c l a s s ) <− c ( ”BH” , ”ICV” , ” I n t e r s e c t i o n ” )
as . t a b l e ( m i s c l a s s )

p i n d s p 1 <− c ( rep ( 0 , p ) )
p i n d s p 2 <− c ( rep ( 0 , p ) )
p i n d s p 1 [ p ind grp1 ] <− 1
p i n d s p 2 [ p ind grp2 ] <− 1

i n t s p l i t s <− data . frame (
x =1: p ,
p ind = c ( p indsp1 , − p i n d s p 2 ) ,
o v e r l a p = f a c t o r ( i f e l s e ( p i n d s p 1 == 1 & p i n d s p 2 == 1 ,

” o v e r l a p ” , ” no o v e r l a p ” ) ) )

## V i s u a l i z a t i o n f o r s i n g l e da ta s e t ( c o n s i d e r p u t t i n g i n T h e s i s p r op er )

g g p l o t ( data= i n t s p l i t s , a e s ( x=x , y=pind , c o l o r = o v e r l a p ) ) +
geom s t e p ( ) +
x l a b ( ” V a r i a b l e ” ) +
y l a b ( ” S i g n i f i c a n c e ” ) +
theme bw ( ) +
geom v l i n e ( x i n t e r c e p t = 100 , l i n e t y p e = ” dashed ” , c o l o r = ” navy ” ) +
g g t i t l e ( ” S i g n i f i c a n t v a r i a b l e s i n s p l i t g roup 1 a r e p o s i t i v e .

\ n S i g n i f i c a n t v a r i a b l e s i n s p l i t g roup 2 a r e n e g a t i v e . ” )

dev . copy ( pdf , ” i n t s p l i t s . pdf ” )
dev . o f f ( )

## V a n i l l a BH

## The r e g u l a r BH p r o c e d u r e i s a p p l i e d t o a l l da ta s e t s .

rho <− c ( seq ( 0 , 9 5 , by =5 ) , 99)
load ( f i l e = ” d a t a rho 0 ” )
Data <− data t r i n d [ [ 2 ] ]
N <− l e n g t h ( Data )
q <− . 3

m i s c l a s s index BH <− l a p p l y ( rho , FUN = f u n c t i o n ( x ){
matrix ( rep ( 0 ,N∗ 4 ) , nrow = N, nco l = 4 )} )

f o r ( i i n rho ){
load ( f i l e = p a s t e ( ” d a t a rho ” , i , s ep = ” ” ) )
t r i n d <− data t r i n d [ [ 1 ] ]
Data <− data t r i n d [ [ 2 ] ]
N <− l e n g t h ( Data )
p <− l e n g t h ( Data [ [ 1 ] ] [ , 1 ] )
p v a l <− l i s t ( rep ( c ( rep ( 0 , p ) ) ,N) )

no c o r e s <− d e t e c t C o r e s ()−1

c l <− m a k e C l u s t e r ( no c o r e s )
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r e g i s t e r D o P a r a l l e l ( c l )

system . t ime (
r e s <− f o r e a c h ( j = 1 :N)% dopar%{

p v a l [ [ j ] ] <− apply ( Data [ [ j ] ] , 1 , FUN = t p v a l )

p i n d i c e s <− benhoch ( p v a l [ [ j ] ] , q )

cbind ( Fdp ( p i n d i c e s , t r i n d ) , Fnp ( p i n d i c e s , t r i n d ) ,
m i s c l a s s p ( p i n d i c e s , t r i n d ) , l e n g t h ( p i n d i c e s ) )

} )
s t o p C l u s t e r ( c l )

m i s c l a s s index BH[ [ which ( rho == i ) ] ] <− matrix ( u n l i s t ( r e s ) ,
nrow = N, nco l = 4 , byrow = TRUE)

}

l a y o u t ( matrix ( 1 : 4 , nrow = 2 , nco l = 2 ) )

p l o t ( rho / 100 , l a p p l y ( m i s c l a s s index BH,
FUN = f u n c t i o n ( x ){mean ( x [ , 1 ] ) } ) , t y p e = ’ l ’ )

p l o t ( rho / 100 , l a p p l y ( m i s c l a s s index BH,
FUN = f u n c t i o n ( x ){mean ( x [ , 2 ] ) } ) , t y p e = ’ l ’ )

p l o t ( rho / 100 , l a p p l y ( m i s c l a s s index BH,
FUN = f u n c t i o n ( x ){mean ( x [ , 3 ] ) } ) , t y p e = ’ l ’ )

p l o t ( rho / 100 , l a p p l y ( m i s c l a s s index BH,
FUN = f u n c t i o n ( x ){mean ( x [ , 4 ] ) } ) , t y p e = ’ l ’ )

## I n t e r s e c t i o n BH

## The I n t e r s e c t i o n BH p r o c e d u r e i s a p p l i e d t o a l l da ta s e t s .

rho <− c ( seq ( 0 , 9 5 , by =5 ) , 99)
load ( f i l e = ” d a t a rho 0 ” )
Data <− data t r i n d [ [ 2 ] ]
N <− l e n g t h ( Data )
q <− . 3

m i s c l a s s index i n t <− l a p p l y ( rho , FUN = f u n c t i o n ( x ){
matrix ( rep ( 0 ,N∗ 4 ) , nrow = N, nco l = 4 )} )

f o r ( i i n rho ){
load ( f i l e = p a s t e ( ” d a t a rho ” , i , s ep = ” ” ) )
t r i n d <− data t r i n d [ [ 1 ] ]
Data <− data t r i n d [ [ 2 ] ]
N <− l e n g t h ( Data )
p <− l e n g t h ( Data [ [ 1 ] ] [ , 1 ] )
n <− l e n g t h ( Data [ [ 1 ] ] [ 1 , ] )

no c o r e s <− d e t e c t C o r e s ()−1

c l <− m a k e C l u s t e r ( no c o r e s )
r e g i s t e r D o P a r a l l e l ( c l )

system . t ime (
r e s <− f o r e a c h ( j = 1 :N)% dopar%{

grp1 <− Data [ [ j ] ] [ , c ( 1 : ( n / 4 ) , ( n / 2 + 1 ) : ( 3 ∗n / 4 ) ) ]
grp2 <− Data [ [ j ] ] [ , c ( ( n / 4 + 1 ) : ( n / 2 ) , ( 3 ∗n / 4 + 1 ) : n ) ]

p v a l 1 <− c ( rep ( 0 , p ) )
p v a l 2 <− c ( rep ( 0 , p ) )

f o r ( k i n 1 : p ){
p v a l 1 [ k ] <− t p v a l ( grp1 [ k , 1 : ( n / 4 ) ] , g rp1 [ k , ( n / 4 + 1 ) : ( n / 2 ) ] )
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}

p indg1 <− benhoch ( pva l1 , q )

f o r ( k i n 1 : p ){
p v a l 2 [ k ] <− t p v a l ( grp2 [ k , 1 : ( n / 4 ) ] , g rp2 [ k , ( n / 4 + 1 ) : ( n / 2 ) ] )

}

p indg2 <− benhoch ( pva l2 , q )

p i n d i c e s <− unique ( s o r t ( c ( p indg1 [ which ( p indg1 %i n% pindg2 ) ] ,
p indg2 [ which ( p indg2 %i n% pindg1 ) ] ) ) )

cbind ( Fdp ( p i n d i c e s , t r i n d ) , Fnp ( p i n d i c e s , t r i n d ) ,
m i s c l a s s p ( p i n d i c e s , t r i n d ) , l e n g t h ( p i n d i c e s ) )

} )
s t o p C l u s t e r ( c l )

m i s c l a s s index i n t [ [ which ( rho == i ) ] ] <− matrix ( u n l i s t ( r e s ) , nrow = N,
nco l = 4 , byrow = TRUE)

}

l a y o u t ( matrix ( 1 : 4 , nrow = 2 , nco l = 2 ) )

p l o t ( rho / 100 , l a p p l y ( m i s c l a s s index i n t ,
FUN = f u n c t i o n ( x ){mean ( x [ , 1 ] ) } ) , t y p e = ’ l ’ )

p l o t ( rho / 100 , l a p p l y ( m i s c l a s s index i n t ,
FUN = f u n c t i o n ( x ){mean ( x [ , 2 ] ) } ) , t y p e = ’ l ’ )

p l o t ( rho / 100 , l a p p l y ( m i s c l a s s index i n t ,
FUN = f u n c t i o n ( x ){mean ( x [ , 3 ] ) } ) , t y p e = ’ l ’ )

p l o t ( rho / 100 , l a p p l y ( m i s c l a s s index i n t ,
FUN = f u n c t i o n ( x ){mean ( x [ , 4 ] ) } ) , t y p e = ’ l ’ )

## ICVBH

## I n t e r n a l l y Cross−V a l i d a t e d BH p r o c e d u r e i s a p p l i e d t o a l l da ta s e t s .

rho <− c ( seq ( 0 , 9 5 , by =5 ) , 99)
load ( f i l e = ” d a t a rho 0 ” )
Data <− data t r i n d [ [ 2 ] ]
N <− l e n g t h ( Data )
q <− . 3

m i s c l a s s index ICV <− l a p p l y ( rho , FUN = f u n c t i o n ( x ){
matrix ( rep ( 0 ,N∗ 4 ) , nrow = N, nco l = 4 )} )

f o r ( i i n rho ){
load ( f i l e = p a s t e ( ” d a t a rho ” , i , s ep = ” ” ) )
t r i n d <− data t r i n d [ [ 1 ] ]
Data <− data t r i n d [ [ 2 ] ]
N <− l e n g t h ( Data )
p <− l e n g t h ( Data [ [ 1 ] ] [ , 1 ] )
n <− l e n g t h ( Data [ [ 1 ] ] [ 1 , ] )

no c o r e s <− d e t e c t C o r e s ()−1

c l <− m a k e C l u s t e r ( no c o r e s )
r e g i s t e r D o P a r a l l e l ( c l )

system . t ime (
r e s <− f o r e a c h ( j = 1 :N)% dopar%{

grp1 <− Data [ [ j ] ] [ , c ( 1 : ( n / 4 ) , ( n / 2 + 1 ) : ( 3 ∗n / 4 ) ) ]
grp2 <− Data [ [ j ] ] [ , c ( ( n / 4 + 1 ) : ( n / 2 ) , ( 3 ∗n / 4 + 1 ) : n ) ]
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p v a l 1 <− c ( rep ( 0 , p ) )
p v a l 2 <− c ( )

f o r ( k i n 1 : p ){
p v a l 1 [ k ] <− t p v a l ( grp1 [ k , 1 : ( n / 4 ) ] , g rp1 [ k , ( n / 4 + 1 ) : ( n / 2 ) ] )

}

p indg1 <− benhoch ( pva l1 , q )

i f ( l e n g t h ( p indg1 )==0){
p i n d i c e s <− p indg1

} e l s e {
f o r ( k i n p indg1 ){

p v a l 2 <− c ( pva l2 , t p v a l ( grp2 [ k , 1 : ( n / 4 ) ] , g rp2 [ k , ( n / 4 + 1 ) : ( n / 2 ) ] ) )
}
p i n d i c e s <− benhoch ( pva l2 , q )

}

cbind ( Fdp ( p i n d i c e s , t r i n d ) , Fnp ( p i n d i c e s , t r i n d ) ,
m i s c l a s s p ( p i n d i c e s , t r i n d ) , l e n g t h ( p i n d i c e s ) )

} )
s t o p C l u s t e r ( c l )

m i s c l a s s index ICV [ [ which ( rho == i ) ] ] <− matrix ( u n l i s t ( r e s ) , nrow = N,
nco l = 4 , byrow = TRUE)

}

l a y o u t ( matrix ( 1 : 4 , nrow = 2 , nco l = 2 ) )

p l o t ( rho / 100 , l a p p l y ( m i s c l a s s index ICV ,
FUN = f u n c t i o n ( x ){mean ( x [ , 1 ] ) } ) , t y p e = ’ l ’ )

p l o t ( rho / 100 , l a p p l y ( m i s c l a s s index ICV ,
FUN = f u n c t i o n ( x ){mean ( x [ , 2 ] ) } ) , t y p e = ’ l ’ )

p l o t ( rho / 100 , l a p p l y ( m i s c l a s s index ICV ,
FUN = f u n c t i o n ( x ){mean ( x [ , 3 ] ) } ) , t y p e = ’ l ’ )

p l o t ( rho / 100 , l a p p l y ( m i s c l a s s index ICV ,
FUN = f u n c t i o n ( x ){mean ( x [ , 4 ] ) } ) , t y p e = ’ l ’ )

## C o n v e r t i n g R e s u l t s t o Data Frames

## V a n i l l a BH

df f d r BH <− as . data . frame ( matrix ( u n l i s t ( l a p p l y (
m i s c l a s s index BH, FUN = f u n c t i o n ( x ){ x [ , 1 ] } ) ) ,
nco l = 21 , nrow = 200 , byrow = FALSE ) )

colnames ( df f d r BH) <− rho / 100

df f n r BH <− as . data . frame ( matrix ( u n l i s t ( l a p p l y (
m i s c l a s s index BH, FUN = f u n c t i o n ( x ){ x [ , 2 ] } ) ) ,
nco l = 21 , nrow = 200 , byrow = FALSE ) )

colnames ( df f n r BH) <− rho / 100

df mis BH <− as . data . frame ( matrix ( u n l i s t ( l a p p l y (
m i s c l a s s index BH, FUN = f u n c t i o n ( x ){ x [ , 3 ] } ) ) ,
nco l = 21 , nrow = 200 , byrow = FALSE ) )

colnames ( df mis BH) <− rho / 100

df d i s BH <− as . data . frame ( matrix ( u n l i s t ( l a p p l y (
m i s c l a s s index BH, FUN = f u n c t i o n ( x ){ x [ , 4 ] } ) ) ,
nco l = 21 , nrow = 200 , byrow = FALSE ) )

colnames ( df d i s BH) <− rho / 100

sum f d r BH <− as . data . frame ( matrix ( c ( rho / 100 ,
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apply ( df f d r BH, 2 , FUN = f u n c t i o n ( x ){mean ( x )} ) ,
apply ( df f d r BH, 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 0 5 ) } ) ,
apply ( df f d r BH, 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 9 5 ) } ) ,
apply ( df f d r BH, 2 , FUN = f u n c t i o n ( x ){ var ( x )} ) ,
apply ( df f d r BH, 2 , FUN = f u n c t i o n ( x ){min ( x )} ) ,
apply ( df f d r BH, 2 , FUN = f u n c t i o n ( x ){max ( x ) } ) ) ,

nrow = 21 , nco l = 7 , byrow = FALSE ) ,
c o l . names = c ( ” rho ” , ”FDR” , ”Q5” , ”Q95” ) )

sum f n r BH <− as . data . frame ( matrix ( c ( rho / 100 ,
apply ( df f n r BH, 2 , FUN = f u n c t i o n ( x ){mean ( x )} ) ,
apply ( df f n r BH, 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 0 5 ) } ) ,
apply ( df f n r BH, 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 9 5 ) } ) ,
apply ( df f n r BH, 2 , FUN = f u n c t i o n ( x ){ var ( x ) } ) ) ,

nrow = 21 , nco l = 5 , byrow = FALSE ) )
sum mis BH <− as . data . frame ( matrix ( c ( rho / 100 ,

apply ( df mis BH, 2 , FUN = f u n c t i o n ( x ){mean ( x )} ) ,
apply ( df mis BH, 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 0 5 ) } ) ,
apply ( df mis BH, 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 9 5 ) } ) ,
apply ( df mis BH, 2 , FUN = f u n c t i o n ( x ){ var ( x ) } ) ) ,

nrow = 21 , nco l = 5 , byrow = FALSE ) )
sum d i s BH <− as . data . frame ( matrix ( c ( rho / 100 ,

apply ( df d i s BH, 2 , FUN = f u n c t i o n ( x ){mean ( x )} ) ,
apply ( df d i s BH, 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 0 5 ) } ) ,
apply ( df d i s BH, 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 9 5 ) } ) ,
apply ( df d i s BH, 2 , FUN = f u n c t i o n ( x ){ var ( x ) } ) ) ,

nrow = 21 , nco l = 5 , byrow = FALSE ) )

## I n t e r s e c t i o n

df f d r i n t <− as . data . frame ( matrix ( u n l i s t ( l a p p l y (
m i s c l a s s index i n t , FUN = f u n c t i o n ( x ){ x [ , 1 ] } ) ) ,
nco l = 21 , nrow = 200 , byrow = FALSE ) )

colnames ( df f d r i n t ) <− rho / 100

df f n r i n t <− as . data . frame ( matrix ( u n l i s t ( l a p p l y (
m i s c l a s s index i n t , FUN = f u n c t i o n ( x ){ x [ , 2 ] } ) ) ,
nco l = 21 , nrow = 200 , byrow = FALSE ) )

colnames ( df f n r i n t ) <− rho / 100

df mis i n t <− as . data . frame ( matrix ( u n l i s t ( l a p p l y (
m i s c l a s s index i n t , FUN = f u n c t i o n ( x ){ x [ , 3 ] } ) ) ,
nco l = 21 , nrow = 200 , byrow = FALSE ) )

colnames ( df mis i n t ) <− rho / 100

df d i s i n t <− as . data . frame ( matrix ( u n l i s t ( l a p p l y (
m i s c l a s s index i n t , FUN = f u n c t i o n ( x ){ x [ , 4 ] } ) ) ,
nco l = 21 , nrow = 200 , byrow = FALSE ) )

colnames ( df d i s i n t ) <− rho / 100

sum f d r i n t <− as . data . frame ( matrix ( c ( rho / 100 ,
apply ( df f d r i n t , 2 , FUN = f u n c t i o n ( x ){mean ( x )} ) ,
apply ( df f d r i n t , 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 0 5 ) } ) ,
apply ( df f d r i n t , 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 9 5 ) } ) ,
apply ( df f d r i n t , 2 , FUN = f u n c t i o n ( x ){ var ( x )} ) ,
apply ( df f d r i n t , 2 , FUN = f u n c t i o n ( x ){min ( x )} ) ,
apply ( df f d r i n t , 2 , FUN = f u n c t i o n ( x ){max ( x ) } ) ) ,

nrow = 21 , nco l = 7 , byrow = FALSE ) )
sum f n r i n t <− as . data . frame ( matrix ( c ( rho / 100 ,

apply ( df f n r i n t , 2 , FUN = f u n c t i o n ( x ){mean ( x )} ) ,
apply ( df f n r i n t , 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 0 5 ) } ) ,
apply ( df f n r i n t , 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 9 5 ) } ) ,
apply ( df f n r i n t , 2 , FUN = f u n c t i o n ( x ){ var ( x ) } ) ) ,

nrow = 21 , nco l = 5 , byrow = FALSE ) )
sum mis i n t <− as . data . frame ( matrix ( c ( rho / 100 ,

apply ( df mis i n t , 2 , FUN = f u n c t i o n ( x ){mean ( x )} ) ,
apply ( df mis i n t , 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 0 5 ) } ) ,
apply ( df mis i n t , 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 9 5 ) } ) ,
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apply ( df mis i n t , 2 , FUN = f u n c t i o n ( x ){ var ( x ) } ) ) ,
nrow = 21 , nco l = 5 , byrow = FALSE ) )

sum d i s i n t <− as . data . frame ( matrix ( c ( rho / 100 ,
apply ( df d i s i n t , 2 , FUN = f u n c t i o n ( x ){mean ( x )} ) ,
apply ( df d i s i n t , 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 0 5 ) } ) ,
apply ( df d i s i n t , 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 9 5 ) } ) ,
apply ( df d i s i n t , 2 , FUN = f u n c t i o n ( x ){ var ( x ) } ) ) ,

nrow = 21 , nco l = 5 , byrow = FALSE ) )

## I n t e r n a l Cross−V a l i d a t i o n

df f d r ICV <− as . data . frame ( matrix ( u n l i s t ( l a p p l y (
m i s c l a s s index ICV , FUN = f u n c t i o n ( x ){ x [ , 1 ] } ) ) ,
nco l = 21 , nrow = 200 , byrow = FALSE ) )

colnames ( df f d r ICV ) <− rho / 100

df f n r ICV <− as . data . frame ( matrix ( u n l i s t ( l a p p l y (
m i s c l a s s index ICV , FUN = f u n c t i o n ( x ){ x [ , 2 ] } ) ) ,
nco l = 21 , nrow = 200 , byrow = FALSE ) )

colnames ( df f n r ICV ) <− rho / 100

df mis ICV <− as . data . frame ( matrix ( u n l i s t ( l a p p l y (
m i s c l a s s index ICV , FUN = f u n c t i o n ( x ){ x [ , 3 ] } ) ) ,
nco l = 21 , nrow = 200 , byrow = FALSE ) )

colnames ( df mis ICV ) <− rho / 100

df d i s ICV <− as . data . frame ( matrix ( u n l i s t ( l a p p l y (
m i s c l a s s index ICV , FUN = f u n c t i o n ( x ){ x [ , 4 ] } ) ) ,
nco l = 21 , nrow = 200 , byrow = FALSE ) )

colnames ( df d i s ICV ) <− rho / 100

sum f d r ICV <− as . data . frame ( matrix ( c ( rho / 100 ,
apply ( df f d r ICV , 2 , FUN = f u n c t i o n ( x ){mean ( x )} ) ,
apply ( df f d r ICV , 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 0 5 ) } ) ,
apply ( df f d r ICV , 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 9 5 ) } ) ,
apply ( df f d r ICV , 2 , FUN = f u n c t i o n ( x ){ var ( x )} ) ,
apply ( df f d r ICV , 2 , FUN = f u n c t i o n ( x ){min ( x )} ) ,
apply ( df f d r ICV , 2 , FUN = f u n c t i o n ( x ){max ( x ) } ) ) ,

nrow = 21 , nco l = 7 , byrow = FALSE ) )
sum f n r ICV <− as . data . frame ( matrix ( c ( rho / 100 ,

apply ( df f n r ICV , 2 , FUN = f u n c t i o n ( x ){mean ( x )} ) ,
apply ( df f n r ICV , 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 0 5 ) } ) ,
apply ( df f n r ICV , 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 9 5 ) } ) ,
apply ( df f n r ICV , 2 , FUN = f u n c t i o n ( x ){ var ( x ) } ) ) ,

nrow = 21 , nco l = 5 , byrow = FALSE ) )
sum mis ICV <− as . data . frame ( matrix ( c ( rho / 100 ,

apply ( df mis ICV , 2 , FUN = f u n c t i o n ( x ){mean ( x )} ) ,
apply ( df mis ICV , 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 0 5 ) } ) ,
apply ( df mis ICV , 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 9 5 ) } ) ,
apply ( df mis ICV , 2 , FUN = f u n c t i o n ( x ){ var ( x ) } ) ) ,

nrow = 21 , nco l = 5 , byrow = FALSE ) )
sum d i s ICV <− as . data . frame ( matrix ( c ( rho / 100 ,

apply ( df d i s ICV , 2 , FUN = f u n c t i o n ( x ){mean ( x )} ) ,
apply ( df d i s ICV , 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 0 5 ) } ) ,
apply ( df d i s ICV , 2 , FUN = f u n c t i o n ( x ){ q u a n t i l e ( x , p r o b s = . 9 5 ) } ) ,
apply ( df d i s ICV , 2 , FUN = f u n c t i o n ( x ){ var ( x ) } ) ) ,

nrow = 21 , nco l = 5 , byrow = FALSE ) )

## V i s u a l i z a t i o n

## For S av in g
setwd ( ” S e t a p p r o p r i a t e d i r e c t o r y ” )
## For S av in g

## FDR

gg f d r BH <− g g p l o t ( data = sum f d r BH, a e s ( x= V1 , y = V2 ) ) + yl im ( 0 , 0 . 6 8 ) +
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geom r i b b o n ( a e s ( ymin = V3 , ymax = V4 ) , f i l l =” grey60 ” ) +
geom l i n e ( a e s ( x = V1 , y = V2 ) ) + l a b s ( x = e x p r e s s i o n ( rho ) , y = ”FDR” ,

t i t l e = ” Benjamini−Hochberg ” )
gg f d r ICV <− g g p l o t ( data = sum f d r ICV , a e s ( x= V1 , y = V2 ) ) + yl im ( 0 , 0 . 6 8 ) +

geom r i b b o n ( a e s ( ymin = V3 , ymax = V4 ) , f i l l =” grey60 ” ) +
geom l i n e ( a e s ( x = V1 , y = V2 ) ) + l a b s ( x = e x p r e s s i o n ( rho ) , y = ”FDR” ,

t i t l e = ” I n t e r n a l l y Cross−V a l i d a t e d ” )
gg f d r i n t <− g g p l o t ( data = sum f d r i n t , a e s ( x= V1 , y = V2 ) ) + yl im ( 0 , 0 . 6 8 ) +

geom r i b b o n ( a e s ( ymin = V3 , ymax = V4 ) , f i l l =” grey60 ” ) +
geom l i n e ( a e s ( x = V1 , y = V2 ) ) + l a b s ( x = e x p r e s s i o n ( rho ) , y = ”FDR” ,

t i t l e = ” I n t e r s e c t i o n ” )
gr id . a r r a n g e ( gg f d r BH, gg f d r ICV , gg f d r i n t , w i d t h s = c ( . 5 , . 5 , . 5 , . 5 ) ,

l a y o u t matrix = rbind ( c ( 1 , 1 , 2 , 2 ) , c (NA, 3 , 3 , NA) ) )

dev . copy ( pdf , ” f d r r i b b o n . pdf ” )
dev . o f f ( )

gg f d r BH <− g g p l o t ( data = sum f d r BH, a e s ( x= V1 , y = V2 ) ) +
yl im ( 0 , 1 ) + geom l i n e ( a e s ( x = V1 , y = V6 ) ) +
geom l i n e ( l i n e t y p e = ” dashed ” , a e s ( x = V1 , y = V7 ) ) +
l a b s ( x = e x p r e s s i o n ( rho ) , y = ”FDR” , t i t l e = ” Benjamini−Hochberg ” )

gg f d r ICV <− g g p l o t ( data = sum f d r ICV , a e s ( x= V1 , y = V2 ) ) +
yl im ( 0 , 1 ) + geom l i n e ( a e s ( x = V1 , y = V6 ) ) +
geom l i n e ( l i n e t y p e = ” dashed ” , a e s ( x = V1 , y = V7 ) ) +
l a b s ( x = e x p r e s s i o n ( rho ) , y = ”FDR” , t i t l e = ” I n t e r n a l l y Cross−V a l i d a t e d ” )

gg f d r i n t <− g g p l o t ( data = sum f d r i n t , a e s ( x= V1 , y = V2 ) ) +
yl im ( 0 , 1 ) + geom l i n e ( a e s ( x = V1 , y = V6 ) ) +
geom l i n e ( l i n e t y p e = ” dashed ” , a e s ( x = V1 , y = V7 ) ) +
l a b s ( x = e x p r e s s i o n ( rho ) , y = ”FDR” , t i t l e = ” I n t e r s e c t i o n ” )

gr id . a r r a n g e ( gg f d r BH, gg f d r ICV , gg f d r i n t , w i d t h s = c ( . 5 , . 5 , . 5 , . 5 ) ,
l a y o u t matrix = rbind ( c ( 1 , 1 , 2 , 2 ) , c (NA, 3 , 3 , NA) ) )

dev . copy ( pdf , ” f d r minmax . pdf ” )
dev . o f f ( )

## FNR

gg f n r BH <− g g p l o t ( data = sum f n r BH, a e s ( x= V1 , y = V2 ) ) + yl im ( 0 . 0 0 7 , 0 . 0 3 4 ) +
geom r i b b o n ( a e s ( ymin = V3 , ymax = V4 ) , f i l l =” grey60 ” ) +
geom l i n e ( a e s ( x = V1 , y = V2 ) ) + l a b s ( x = e x p r e s s i o n ( rho ) , y = ”FNR” ,

t i t l e = ” Benjamini−Hochberg ” )
gg f n r INV <− g g p l o t ( data = sum f n r ICV , a e s ( x= V1 , y = V2 ) ) + yl im ( 0 . 0 0 7 , 0 . 0 3 4 ) +

geom r i b b o n ( a e s ( ymin = V3 , ymax = V4 ) , f i l l =” grey60 ” ) +
geom l i n e ( a e s ( x = V1 , y = V2 ) ) + l a b s ( x = e x p r e s s i o n ( rho ) , y = ”FNR” ,

t i t l e = ” I n t e r n a l l y Cross−V a l i d a t e d ” )
gg f n r i n t <− g g p l o t ( data = sum f n r i n t , a e s ( x= V1 , y = V2 ) ) + yl im ( 0 . 0 0 7 , 0 . 0 3 4 ) +

geom r i b b o n ( a e s ( ymin = V3 , ymax = V4 ) , f i l l =” grey60 ” ) +
geom l i n e ( a e s ( x = V1 , y = V2 ) ) + l a b s ( x = e x p r e s s i o n ( rho ) , y = ”FNR” ,

t i t l e = ” I n t e r s e c t i o n ” )
gr id . a r r a n g e ( gg f n r BH, gg f n r INV , gg f n r i n t , w i d t h s = c ( . 5 , . 5 , . 5 , . 5 ) ,

l a y o u t matrix = rbind ( c ( 1 , 1 , 2 , 2 ) , c (NA, 3 , 3 , NA) ) )

dev . copy ( pdf , ” f n r r i b b o n . pdf ” )
dev . o f f ( )

## M i s c l a s s i f i c a t i o n

gg mis BH <− g g p l o t ( data = sum mis BH, a e s ( x= V1 , y = V2 ) ) + yl im ( 0 , 0 . 2 ) +
geom r i b b o n ( a e s ( ymin = V3 , ymax = V4 ) , f i l l =” grey60 ” ) +
geom l i n e ( a e s ( x = V1 , y = V2 ) ) +
l a b s ( x = e x p r e s s i o n ( rho ) , y = ” M i s c l a s s i f i c a t i o n P r o b a b i l i t y ” ,

t i t l e = ” Benjamini−Hochberg ” )
gg mis INV <− g g p l o t ( data = sum mis ICV , a e s ( x= V1 , y = V2 ) ) + yl im ( 0 , 0 . 2 ) +

geom r i b b o n ( a e s ( ymin = V3 , ymax = V4 ) , f i l l =” grey60 ” ) +
geom l i n e ( a e s ( x = V1 , y = V2 ) ) +
l a b s ( x = e x p r e s s i o n ( rho ) , y = ” M i s c l a s s i f i c a t i o n P r o b a b i l i t y ” ,

t i t l e = ” I n t e r n a l l y Cross−V a l i d a t e d ” )
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gg mis i n t <− g g p l o t ( data = sum mis i n t , a e s ( x= V1 , y = V2 ) ) + yl im ( 0 , 0 . 2 ) +
geom r i b b o n ( a e s ( ymin = V3 , ymax = V4 ) , f i l l =” grey60 ” ) +
geom l i n e ( a e s ( x = V1 , y = V2 ) ) +
l a b s ( x = e x p r e s s i o n ( rho ) , y = ” M i s c l a s s i f i c a t i o n P r o b a b i l i t y ” ,

t i t l e = ” I n t e r s e c t i o n ” )
gr id . a r r a n g e ( gg mis BH, gg mis INV , gg mis i n t , w i d t h s = c ( . 5 , . 5 , . 5 , . 5 ) ,

l a y o u t matrix = rbind ( c ( 1 , 1 , 2 , 2 ) , c (NA, 3 , 3 , NA) ) )

dev . copy ( pdf , ” mis r i b b o n . pdf ” )
dev . o f f ( )

## D i s c o v e r i e s

gg d i s BH <− g g p l o t ( data = sum d i s BH, a e s ( x= V1 , y = V2 ) ) + yl im ( 6 0 , 270) +
geom r i b b o n ( a e s ( ymin = V3 , ymax = V4 ) , f i l l =” grey60 ” ) +
geom l i n e ( a e s ( x = V1 , y = V2 ) ) +
l a b s ( x = e x p r e s s i o n ( rho ) , y = ” D i s c o v e r i e s ” , t i t l e = ” Benjamini−Hochberg ” )

gg d i s INV <− g g p l o t ( data = sum d i s ICV , a e s ( x= V1 , y = V2 ) ) + yl im ( 6 0 , 270) +
geom r i b b o n ( a e s ( ymin = V3 , ymax = V4 ) , f i l l =” grey60 ” ) +
geom l i n e ( a e s ( x = V1 , y = V2 ) ) +
l a b s ( x = e x p r e s s i o n ( rho ) , y = ” D i s c o v e r i e s ” , t i t l e = ” I n t e r n a l l y Cross−V a l i d a t e d ” )

gg d i s i n t <− g g p l o t ( data = sum d i s i n t , a e s ( x= V1 , y = V2 ) ) + yl im ( 6 0 , 270) +
geom r i b b o n ( a e s ( ymin = V3 , ymax = V4 ) , f i l l =” grey60 ” ) +
geom l i n e ( a e s ( x = V1 , y = V2 ) ) +
l a b s ( x = e x p r e s s i o n ( rho ) , y = ” D i s c o v e r i e s ” , t i t l e = ” I n t e r s e c t i o n ” )

gr id . a r r a n g e ( gg d i s BH, gg d i s INV , gg d i s i n t , w i d t h s = c ( . 5 , . 5 , . 5 , . 5 ) ,
l a y o u t matrix = rbind ( c ( 1 , 1 , 2 , 2 ) , c (NA, 3 , 3 , NA) ) )

dev . copy ( pdf , ” d i s r i b b o n . pdf ” )
dev . o f f ( )

## P r o s t a t e Cancer Data A n a l y s i s

load ( ” Load Data ” )

### For S av in g
setwd ( ” Your D i r e c t o r y ” )
### For S av in g

s e t . s e ed ( 1 3 )

data <− p r o s t a t e d a t a
p <− l e n g t h ( data [ , 1 ] )
n <− l e n g t h ( data [ 1 , ] )
q1 <− . 1
q2 <− . 3

d a t a 1 <− c ( )
d a t a 2 <− c ( )

f o r ( i i n 1 : n ){
i f ( l a b e l s ( data [ 1 , i ] ) = = 1 ){

d a t a 1 <− cbind ( da ta1 , data [ , i ] )
} e l s e {

d a t a 2 <− cbind ( da ta2 , data [ , i ] )
}

}

## V a n i l l a BH

p v a l <− c ( rep ( 0 , p ) )

p v a l <− apply ( data , 1 , FUN = f u n c t i o n ( x ){ t p v a l ( x = x [ which ( l a b e l s ( x ) = = 1 ) ] ,
y = x [ which ( l a b e l s ( x ) = = 2 ) ] )} )

p ind BH <− benhoch ( pva l , q2 )
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nsigBH <− l e n g t h ( p ind BH)

nsigBH

## ICVBH

nsigICVBH <− c ( )

p v a l 1 <− c ( rep ( 0 , p ) )
p v a l 2 <− c ( )

f o r ( i i n 1 : 3 0 0 ){
g r p 1 c o l <− c ( sample ( 1 : nco l ( d a t a 1 ) , ( nco l ( d a t a 1 ) / 2 ) ) ,

sample ( ( nco l ( d a t a 1 ) + 1 ) : nco l ( data ) , ( nco l ( d a t a 2 ) / 2 ) ) )

grp1 <− data [ , g r p 1 c o l ]
grp2 <− data [ ,− g r p 1 c o l ]

p v a l 1 <− apply ( grp1 , 1 , FUN = f u n c t i o n ( x )
{ t p v a l ( x = x [ which ( l a b e l s ( x ) = = 1 ) ] , y = x [ which ( l a b e l s ( x ) = = 2 ) ] )} )

p ind grp1 <− benhoch ( pva l1 , q2 )

i f ( i s . n u l l ( p ind grp1 ) ){
nsigICVBH <− c ( nsigICVBH , l e n g t h ( p ind ICVBH ) )

} e l s e {
i f ( l e n g t h ( p ind grp1 )==1){

p v a l 2 <− t p v a l ( x = grp2 [ p ind grp1 , which ( l a b e l s ( g rp2 [ 1 , ] ) = = 1 ) ] ,
y = grp2 [ p ind grp1 , which ( l a b e l s ( g rp2 [ 1 , ] ) = = 2 ) ] )

p ind ICVBH <− benhoch ( pva l2 , q2 )

nsigICVBH <− c ( nsigICVBH , l e n g t h ( p ind ICVBH ) )
} e l s e {

p v a l 2 <− apply ( g rp2 [ p ind grp1 , ] , 1 , FUN = f u n c t i o n ( x )
{ t p v a l ( x = x [ which ( l a b e l s ( x ) = = 1 ) ] , y = x [ which ( l a b e l s ( x ) = = 2 ) ] )} )

p ind ICVBH <− benhoch ( pva l2 , q2 )

nsigICVBH <− c ( nsigICVBH , l e n g t h ( p ind ICVBH ) )
}

}
}

mean ( nsigICVBH )

## I n t e r s e c t i o n BH

nsigIBH <− c ( )

p v a l 1 <− c ( rep ( 0 , p ) )
p v a l 2 <− c ( )

f o r ( i i n 1 : 3 0 0 ){
g r p 1 c o l <− c ( sample ( 1 : nco l ( d a t a 1 ) , ( nco l ( d a t a 1 ) / 2 ) ) ,

sample ( ( nco l ( d a t a 1 ) + 1 ) : nco l ( data ) , ( nco l ( d a t a 2 ) / 2 ) ) )

grp1 <− data [ , g r p 1 c o l ]
grp2 <− data [ ,− g r p 1 c o l ]

p v a l 1 <− apply ( grp1 , 1 , FUN = f u n c t i o n ( x )
{ t p v a l ( x = x [ which ( l a b e l s ( x ) = = 1 ) ] , y = x [ which ( l a b e l s ( x ) = = 2 ) ] )} )

p ind grp1 <− benhoch ( pva l1 , q2 )

p v a l 2 <− apply ( grp2 , 1 , FUN = f u n c t i o n ( x )
{ t p v a l ( x = x [ which ( l a b e l s ( x ) = = 1 ) ] , y = x [ which ( l a b e l s ( x ) = = 2 ) ] )} )
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p ind grp2 <− benhoch ( pva l2 , q2 )

p ind IBH <− unique ( s o r t ( c ( p ind grp1 [ which ( p ind grp1 %i n% pind grp2 ) ] ,
p ind grp2 [ which ( p ind grp2 %i n% pind grp1 ) ] ) ) )

nsigIBH <− c ( nsigICVBH , l e n g t h ( p ind ICVBH ) )
}

l a y o u t ( matrix ( c ( 1 , 2 ) , nco l = 2 , nrow = 1 ) )
h i s t ( nsigICVBH , main = ” His togram f o r ICV−BH” , x l a b = ” s e l e c t e d genes ” )
h i s t ( nsigIBH , main = ” His togram f o r I−BH” , x l a b = ” s e l e c t e d genes ” )

dev . copy ( pdf , ” IIBH h i s t . pdf ” )
dev . o f f ( )

mean ( nsigIBH )
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