200 research outputs found

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Energy dependence of ϕ meson production at forward rapidity in pp collisions at the LHC

    Get PDF
    The production of ϕ\phi mesons has been studied in pp collisions at LHC energies with the ALICE detector via the dimuon decay channel in the rapidity region 2.5<y<42.5< y < 4. Measurements of the differential cross section d2σ/dydpT\mathrm{d}^2\sigma /\mathrm{d}y \mathrm{d}p_{\mathrm {T}} are presented as a function of the transverse momentum (pTp_{\mathrm {T}}) at the center-of-mass energies s=5.02\sqrt{s}=5.02, 8 and 13 TeV and compared with the ALICE results at midrapidity. The differential cross sections at s=5.02\sqrt{s}=5.02 and 13 TeV are also studied in several rapidity intervals as a function of pTp_{\mathrm {T}}, and as a function of rapidity in three pTp_{\mathrm {T}} intervals. A hardening of the pTp_{\mathrm {T}}-differential cross section with the collision energy is observed, while, for a given energy, pTp_{\mathrm {T}} spectra soften with increasing rapidity and, conversely, rapidity distributions get slightly narrower at increasing pTp_{\mathrm {T}}. The new results, complementing the published measurements at s=2.76\sqrt{s}=2.76 and 7 TeV, allow one to establish the energy dependence of ϕ\phi meson production and to compare the measured cross sections with phenomenological models. None of the considered models manages to describe the evolution of the cross section with pTp_{\mathrm {T}} and rapidity at all the energies.publishedVersio

    ϒ production in p–Pb collisions at √sNN=8.16 TeV

    Get PDF
    ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Where Brain, Body and World Collide

    Get PDF
    The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| &lt; 0.8) in the transverse momentum range 1 &lt; pt &lt; 8 Gev/c with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy sqrt{s} = 7 TeV using an integrated luminosity of 2.2 nb^{-1}. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs

    Forward rapidity J/ψ production as a function of charged-particle multiplicity in pp collisions at s \sqrt{s} = 5.02 and 13 TeV

    No full text
    International audienceThe production of J/ψ is measured as a function of charged-particle multiplicity at forward rapidity in proton-proton (pp) collisions at center-of-mass energies s \sqrt{s} = 5.02 and 13 TeV. The J/ψ mesons are reconstructed via their decay into dimuons in the rapidity interval (2.5 < y < 4.0), whereas the charged-particle multiplicity density (dNch_{ch}/dη) is measured at midrapidity (|η| < 1). The production rate as a function of multiplicity is reported as the ratio of the yield in a given multiplicity interval to the multiplicity-integrated one. This observable shows a linear increase with charged-particle multiplicity normalized to the corresponding average value for inelastic events (dNch_{ch}/dη/〈dNch_{ch}/dη〉), at both the colliding energies. Measurements are compared with available ALICE results at midrapidity and theoretical model calculations. First measurement of the mean transverse momentum (〈pT_{T}〉) of J/ψ in pp collisions exhibits an increasing trend as a function of dNch_{ch}/dη/〈dNch_{ch}/dη〉 showing a saturation towards high charged-particle multiplicities.[graphic not available: see fulltext

    Hypertriton production in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The study of nuclei and antinuclei production has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. The first measurement of the production of 3ΛH in p-Pb collisions at sNN−−−√ = 5.02 TeV is presented in this Letter. Its production yield measured in the rapidity interval −1<y<0 for the 40% highest multiplicity p-Pb collisions is dN/dy=[6.3±1.8(stat.)±1.2(syst.)]×10−7. The measurement is compared with the expectations of statistical hadronisation and coalescence models, which describe the nucleosynthesis in hadronic collisions. These two models predict very different yields of the hypertriton in charged particle multiplicity environments relevant to small collision systems such as p-Pb and therefore the measurement of dN/dy is crucial to distinguish between them. The precision of this measurement leads to the exclusion with a significance larger than 6.9σ of some configurations of the statistical hadronization model, thus constraining the theory behind the production of loosely bound states at hadron colliders

    Underlying Event measurements in pp collisions at root s=0.9 and 7 TeV with the ALICE experiment at the LHC

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.7Calouste Gulbenkian Foundation from LisbonSwiss Fonds Kidagan, ArmeniaConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Financiadora de Estudos e Projetos (FINEP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)National Natural Science Foundation of China (NSFC)Chinese Ministry of Education (CMOE)Ministry of Science and Technology of China (MSTC)Ministry of Education and Youth of the Czech RepublicDanish Natural Science Research CouncilCarlsberg FoundationDanish National Research FoundationEuropean Research Council under European CommunityHelsinki Institute of PhysicsAcademy of FinlandFrench CNRS-IN2P3Region Pays de LoireRegion AlsaceRegion AuvergneCEA, FranceGerman BMBFHelmholtz AssociationGeneral Secretariat for Research and Technology, Ministry of Development, GreeceHungarian OTKANational Office for Research and Technology (NKTH)Department of Atomic EnergyDepartment of Science and Technology of the Government of IndiaIstituto Nazionale di Fisica Nucleare (INFN) of ItalyMEXT, JapanJoint Institute for Nuclear Research, DubnaNational Research Foundation of Korea (NRF)CONACYTDGAPA, MexicoALFA-ECHELEN Program (High-Energy physics Latin-American-European Network)Stichting voor Fundamenteel Onderzoek der Materie (FOM)Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), NetherlandsResearch Council of Norway (NFR)Polish Ministry of Science and Higher EducationNational Authority for Scientific Research - NASR (Autoritatea Nationala pentru Cercetare Stiintifica - ANCS)Federal Agency of Science of the Ministry of Education and Science of Russian FederationInternational Science and Technology Center, Russian Academy of SciencesRussian Federal Agency of Atomic EnergyRussian Federal Agency for Science and InnovationsCERN-INTASMinistry of Education of SlovakiaDepartment of Science and Technology, South AfricaCIEMATEELAMinisterio de Educacion y Ciencia of SpainXunta de Galicia (Conselleria de Educacion)CEADENCubaenergia, CubaIAEA (International Atomic Energy Agency)Swedish Reseach Council (VR)Knut & Alice Wallenberg Foundation (KAW)Ukraine Ministry of Education and ScienceUnited Kingdom Science and Technology Facilities Council (STFC)The United States Department of EnergyUnited States National Science FoundationState of TexasState of OhioFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Coherent J/ψ photoproduction in ultra-peripheral Pb–Pb collisions at √sNN=2.76 TeV

    No full text
    The ALICE Collaboration has made the first measurement at the LHC of J/ψ photoproduction in ultra-peripheral Pb–Pb collisions at sNN=2.76 TeV. The J/ψ is identified via its dimuon decay in the forward rapidity region with the muon spectrometer for events where the hadronic activity is required to be minimal. The analysis is based on an event sample corresponding to an integrated luminosity of about 55 μb−1. The cross section for coherent J/ψ production in the rapidity interval −3.6<y<−2.6 is measured to be dσJ/ψcoh/dy=1.00±0.18(stat)−0.26+0.24(syst) mb. The result is compared to theoretical models for coherent J/ψ production and found to be in good agreement with those models which include nuclear gluon shadowing
    corecore