39 research outputs found

    Visual overviews for discovering key papers and influences across research fronts

    Full text link
    Gaining a rapid overview of an emerging scientific topic, sometimes called research fronts , is an increasingly common task due to the growing amount of interdisciplinary collaboration. Visual overviews that show temporal patterns of paper publication and citation links among papers can help researchers and analysts to see the rate of growth of topics, identify key papers, and understand influences across subdisciplines. This article applies a novel network-visualization tool based on meaningful layouts of nodes to present research fronts and show citation links that indicate influences across research fronts. To demonstrate the value of two-dimensional layouts with multiple regions and user control of link visibility, we conducted a design-oriented, preliminary case study with 6 domain experts over a 4-month period. The main benefits were being able (a) to easily identify key papers and see the increasing number of papers within a research front, and (b) to quickly see the strength and direction of influence across related research fronts.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64320/1/21160_ftp.pd

    The Case for Visual Analytics of Arsenic Concentrations in Foods

    Get PDF
    Arsenic is a naturally occurring toxic metal and its presence in food could be a potential risk to the health of both humans and animals. Prolonged ingestion of arsenic contaminated water may result in manifestations of toxicity in all systems of the body. Visual Analytics is a multidisciplinary field that is defined as the science of analytical reasoning facilitated by interactive visual interfaces. The concentrations of arsenic vary in foods making it impractical and impossible to provide regulatory limit for each food. This review article presents a case for the use of visual analytics approaches to provide comparative assessment of arsenic in various foods. The topics covered include (i) metabolism of arsenic in the human body; (ii) arsenic concentrations in various foods; (ii) factors affecting arsenic uptake in plants; (ii) introduction to visual analytics; and (iv) benefits of visual analytics for comparative assessment of arsenic concentration in foods. Visual analytics can provide an information superstructure of arsenic in various foods to permit insightful comparative risk assessment of the diverse and continually expanding data on arsenic in food groups in the context of country of study or origin, year of study, method of analysis and arsenic species

    Research directions in data wrangling: Visualizations and transformations for usable and credible data

    Get PDF
    In spite of advances in technologies for working with data, analysts still spend an inordinate amount of time diagnosing data quality issues and manipulating data into a usable form. This process of ‘data wrangling’ often constitutes the most tedious and time-consuming aspect of analysis. Though data cleaning and integration arelongstanding issues in the database community, relatively little research has explored how interactive visualization can advance the state of the art. In this article, we review the challenges and opportunities associated with addressing data quality issues. We argue that analysts might more effectively wrangle data through new interactive systems that integrate data verification, transformation, and visualization. We identify a number of outstanding research questions, including how appropriate visual encodings can facilitate apprehension of missing data, discrepant values, and uncertainty; how interactive visualizations might facilitate data transform specification; and how recorded provenance and social interaction might enable wider reuse, verification, and modification of data transformations

    Designers of the future

    No full text

    CEA Cryomodules Design for SARAF Phase 2

    No full text
    International audienceCEA is committed to delivering a Medium Energy Beam Transfer line and a superconducting linac (SCL) for SARAF accelerator in order to accelerate 5mA beam of either protons from 1.3 MeV to 35 MeV or deuterons from 2.6 MeV to 40.1 MeV. The SCL consists in 4 cryomodules separated by warm diagnostics housing beam diagnostics. The first two identical cryomodules host 6 half-wave resonator (HWR) low beta cavities (ÎČ = 0.091), 176 MHz. The last two identical cryomodules are equipped with 7 HWR high-beta cavities (ÎČ = 0.181), 176 MHz. The beam is focused through superconducting solenoids located between cavities housing steering coils. A Beam Position Monitor is placed upstream each solenoid. A diagnostic box containing a beam profiler and a vacuum pump will be placed at the end of each cryomodule. The cryomodules and the warm sections are being designed. These studies will be presented in this poster
    corecore