644 research outputs found

    Visual Mining of Epidemic Networks

    Full text link
    We show how an interactive graph visualization method based on maximal modularity clustering can be used to explore a large epidemic network. The visual representation is used to display statistical tests results that expose the relations between the propagation of HIV in a sexual contact network and the sexual orientation of the patients.Comment: 8 page

    An Interactive Tool to Explore and Improve the Ply Number of Drawings

    Full text link
    Given a straight-line drawing Γ\Gamma of a graph G=(V,E)G=(V,E), for every vertex vv the ply disk DvD_v is defined as a disk centered at vv where the radius of the disk is half the length of the longest edge incident to vv. The ply number of a given drawing is defined as the maximum number of overlapping disks at some point in R2\mathbb{R}^2. Here we present a tool to explore and evaluate the ply number for graphs with instant visual feedback for the user. We evaluate our methods in comparison to an existing ply computation by De Luca et al. [WALCOM'17]. We are able to reduce the computation time from seconds to milliseconds for given drawings and thereby contribute to further research on the ply topic by providing an efficient tool to examine graphs extensively by user interaction as well as some automatic features to reduce the ply number.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    The Galois Complexity of Graph Drawing: Why Numerical Solutions are Ubiquitous for Force-Directed, Spectral, and Circle Packing Drawings

    Get PDF
    Many well-known graph drawing techniques, including force directed drawings, spectral graph layouts, multidimensional scaling, and circle packings, have algebraic formulations. However, practical methods for producing such drawings ubiquitously use iterative numerical approximations rather than constructing and then solving algebraic expressions representing their exact solutions. To explain this phenomenon, we use Galois theory to show that many variants of these problems have solutions that cannot be expressed by nested radicals or nested roots of low-degree polynomials. Hence, such solutions cannot be computed exactly even in extended computational models that include such operations.Comment: Graph Drawing 201

    Nothing Ventured, Nothing Gained: Addressing the Critical Gaps in Risk-Taking Capital for Social Enterprise

    Get PDF
    The worldwide growth of social enterprise is threatened by a dearth of capital. Social enterprises need investment to grow and to innovate – investment that takes on the risk of the enterprise. This kind of capital cannot easily be pieced together from limited grants, conventional equity and ill-fitted debt. As increasing numbers of social entrepreneurs and mission-based financiers seek to enter the field, a question arises: Can the sector develop new instruments and stakeholder relationships to meet this challenge

    Bayesian modeling of networks in complex business intelligence problems

    Full text link
    Complex network data problems are increasingly common in many fields of application. Our motivation is drawn from strategic marketing studies monitoring customer choices of specific products, along with co-subscription networks encoding multiple purchasing behavior. Data are available for several agencies within the same insurance company, and our goal is to efficiently exploit co-subscription networks to inform targeted advertising of cross-sell strategies to currently mono-product customers. We address this goal by developing a Bayesian hierarchical model, which clusters agencies according to common mono-product customer choices and co-subscription networks. Within each cluster, we efficiently model customer behavior via a cluster-dependent mixture of latent eigenmodels. This formulation provides key information on mono-product customer choices and multiple purchasing behavior within each cluster, informing targeted cross-sell strategies. We develop simple algorithms for tractable inference, and assess performance in simulations and an application to business intelligence

    Drawing Graphs within Restricted Area

    Full text link
    We study the problem of selecting a maximum-weight subgraph of a given graph such that the subgraph can be drawn within a prescribed drawing area subject to given non-uniform vertex sizes. We develop and analyze heuristics both for the general (undirected) case and for the use case of (directed) calculation graphs which are used to analyze the typical mistakes that high school students make when transforming mathematical expressions in the process of calculating, for example, sums of fractions

    Loan and nonloan flows in the Australian interbank network

    Full text link
    High-value transactions between Australian banks are settled in the Reserve Bank Information and Transfer System (RITS) administered by the Reserve Bank of Australia. RITS operates on a real-time gross settlement (RTGS) basis and settles payments sourced from the SWIFT, the Austraclear, and the interbank transactions entered directly into RITS. In this paper, we analyse a dataset received from the Reserve Bank of Australia that includes all interbank transactions settled in RITS on an RTGS basis during five consecutive weekdays from 19 February 2007 inclusive, a week of relatively quiescent market conditions. The source, destination, and value of each transaction are known, which allows us to separate overnight loans from other transactions (nonloans) and reconstruct monetary flows between banks for every day in our sample. We conduct a novel analysis of the flow stability and examine the connection between loan and nonloan flows. Our aim is to understand the underlying causal mechanism connecting loan and nonloan flows. We find that the imbalances in the banks' exchange settlement funds resulting from the daily flows of nonloan transactions are almost exactly counterbalanced by the flows of overnight loans. The correlation coefficient between loan and nonloan imbalances is about -0.9 on most days. Some flows that persist over two consecutive days can be highly variable, but overall the flows are moderately stable in value. The nonloan network is characterised by a large fraction of persistent flows, whereas only half of the flows persist over any two consecutive days in the loan network. Moreover, we observe an unusual degree of coherence between persistent loan flow values on Tuesday and Wednesday. We probe static topological properties of the Australian interbank network and find them consistent with those observed in other countries

    Identifying the underlying structure and dynamic interactions in a voting network

    Get PDF
    We analyse the structure and behaviour of a specific voting network using a dynamic structure-based methodology which draws on Q-Analysis and social network theory. Our empirical focus is on the Eurovision Song Contest over a period of 20 years. For a multicultural contest of this kind, one of the key questions is how the quality of a song is judged and how voting groups emerge. We investigate structures that may identify the winner based purely on the topology of the network. This provides a basic framework to identify what the characteristics associated with becoming a winner are, and may help to establish a homogenous criterion for subjective measures such as quality. Further, we measure the importance of voting cliques, and present a dynamic model based on a changing multidimensional measure of connectivity in order to reveal the formation of emerging community structure within the contest. Finally, we study the dynamic behaviour exhibited by the network in order to understand the clustering of voting preferences and the relationship between local and global properties.Comment: 20 pages, 10 figures, 3 tables, submitted to Physica

    A Distributed Multilevel Force-directed Algorithm

    Full text link
    The wide availability of powerful and inexpensive cloud computing services naturally motivates the study of distributed graph layout algorithms, able to scale to very large graphs. Nowadays, to process Big Data, companies are increasingly relying on PaaS infrastructures rather than buying and maintaining complex and expensive hardware. So far, only a few examples of basic force-directed algorithms that work in a distributed environment have been described. Instead, the design of a distributed multilevel force-directed algorithm is a much more challenging task, not yet addressed. We present the first multilevel force-directed algorithm based on a distributed vertex-centric paradigm, and its implementation on Giraph, a popular platform for distributed graph algorithms. Experiments show the effectiveness and the scalability of the approach. Using an inexpensive cloud computing service of Amazon, we draw graphs with ten million edges in about 60 minutes.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    • …
    corecore