397 research outputs found

    How proofs are prepared at Camelot

    Full text link
    We study a design framework for robust, independently verifiable, and workload-balanced distributed algorithms working on a common input. An algorithm based on the framework is essentially a distributed encoding procedure for a Reed--Solomon code, which enables (a) robustness against byzantine failures with intrinsic error-correction and identification of failed nodes, and (b) independent randomized verification to check the entire computation for correctness, which takes essentially no more resources than each node individually contributes to the computation. The framework builds on recent Merlin--Arthur proofs of batch evaluation of Williams~[{\em Electron.\ Colloq.\ Comput.\ Complexity}, Report TR16-002, January 2016] with the observation that {\em Merlin's magic is not needed} for batch evaluation---mere Knights can prepare the proof, in parallel, and with intrinsic error-correction. The contribution of this paper is to show that in many cases the verifiable batch evaluation framework admits algorithms that match in total resource consumption the best known sequential algorithm for solving the problem. As our main result, we show that the kk-cliques in an nn-vertex graph can be counted {\em and} verified in per-node O(n(ω+ϵ)k/6)O(n^{(\omega+\epsilon)k/6}) time and space on O(n(ω+ϵ)k/6)O(n^{(\omega+\epsilon)k/6}) compute nodes, for any constant ϵ>0\epsilon>0 and positive integer kk divisible by 66, where 2ω<2.37286392\leq\omega<2.3728639 is the exponent of matrix multiplication. This matches in total running time the best known sequential algorithm, due to Ne{\v{s}}et{\v{r}}il and Poljak [{\em Comment.~Math.~Univ.~Carolin.}~26 (1985) 415--419], and considerably improves its space usage and parallelizability. Further results include novel algorithms for counting triangles in sparse graphs, computing the chromatic polynomial of a graph, and computing the Tutte polynomial of a graph.Comment: 42 p

    Algorithms for visualization of graph-based structures

    Get PDF
    Buildings today are built to maintain a healthy indoor environment and an efficient energy usage which is probably why damages caused by dampness has increased since the 1960’s. A study between year 2008 and 2010 showed that 26 percent of the 110 000 examined houses had damages and flaws caused by dampness that could prove to be harmful later on. This means that one out of four bathrooms risk the chance to develop damages by dampness. Approximately 2 percent of the houses had already developed water damages. It is here where the problems appear. A house or a building that is damaged by water of dampness need time to dry out before any renovation can take place. This means that damaged parts must be removed and allowed to dry out, this takes a long time to do and the costs are high and at the same time it can cause inconvenience to the residents. Here is where the Air Gap Method enters the picture. The meaning with the method is to drain and dry out the moisture without the need to perform a larger renovation. The Air Gap Method is a so called "forgiving"-system that is if water damages occur the consequences will be small. The Air Gap method means that an air gap is created in the walls, ceiling and the floor where a heating cable in the gap heats up the air and creates an air movement. The point is to create a stack effect in the gap that with the help of the air movement transports the damp air through an opening by the ceiling. The aim of this thesis is to examine if it’s necessary with the heating cable in the air gap and if there is a specific drying out pattern of the water damaged bathroom floor. The possibility of mould growth will also be examined. The study showed that the damped floor did dry out even without a heating cable, but as one of the studies showed signs of mould growth it is shown that the risk for mould growth is higher without a heating cable. There was a seven days difference in the drying out time between the studies with and without the heating cable; this difference can be decisive for mould growth which is why the heating cable is recommended. The Air Gap method is quite easy to apply in houses with light frame constructions simply by using a smaller dimension on the studs to create the air gap in the floor and walls. The method can also be applied in apartment buildings with a concrete frame by using the room-in- room principal. When renovating existing bathrooms it’s easier to use prefabricated elements to create the air gap in the floor and walls. ~

    A Statistical Method for Object Counting

    Full text link
    In this paper we present a new object counting method that is intended for counting similarly sized and mostly round objects. Unlike many other algorithms of the same purpose, the proposed method does not rely on identifying every object, it uses statistical data obtained from the image instead. The method is evaluated on images with human bone cells, oranges and pills achieving good accuracy. Its strengths are ability to deal with touching and partly overlapping objects, ability to work with different kinds of objects without prior configuration and good performance

    Finite automata with advice tapes

    Full text link
    We define a model of advised computation by finite automata where the advice is provided on a separate tape. We consider several variants of the model where the advice is deterministic or randomized, the input tape head is allowed real-time, one-way, or two-way access, and the automaton is classical or quantum. We prove several separation results among these variants, demonstrate an infinite hierarchy of language classes recognized by automata with increasing advice lengths, and establish the relationships between this and the previously studied ways of providing advice to finite automata.Comment: Corrected typo
    corecore