28 research outputs found

    Acanthamoeba castellanii (genotype T4) stimulates the production of interleukin-10 as well as pro-inflammatory cytokines in THP-1 cells, human peripheral blood mononuclear cells and human monocyte-derived macrophages

    Get PDF
    Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages, during the early phase of infection. Herein, THP-1 cells, primary human monocytes isolated from peripheral blood and human monocyte-derived macrophages were either co-incubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell free conditioned medium. Production of pro-inflammatory cytokines (TNF-α, IL-6, IL-12), anti-inflammatory cytokine (IL-10) and chemokine (IL-8) was evaluated at specific hours post-stimulation (ranging from 1.30 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by a significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both pro-inflammatory cytokines and chemokine production, suggesting that this protozoan infection may result from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of pro-inflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response

    Arginine metabolism in Trichomonas vaginalis infected with Mycoplasma hominis

    Get PDF
    Both Mycoplasma hominis and Trichomonas vaginalis utilize arginine as an energy source via the arginine dihydrolase (ADH) pathway. It has been previously demonstrated that M. hominis forms a stable intracellular relationship with T. vaginalis; hence, in this study we examined the interaction of two localized ADH pathways by comparing T. vaginalis strain SS22 with the laboratory-generated T. vaginalis strain SS22-MOZ2 infected with M. hominis MOZ2. The presence of M. hominis resulted in an approximately 16-fold increase in intracellular ornithine and a threefold increase in putrescine, compared with control T. vaginalis cultures. No change in the activity of enzymes of the ADH pathway could be demonstrated in SS22-MOZ2 compared with the parent SS22, and the increased production of ornithine could be attributed to the presence of M. hominis. Using metabolic flow analysis it was determined that the elasticity of enzymes of the ADH pathway in SS22-MOZ2 was unchanged compared with the parent SS22; however, the elasticity of ornithine decarboxylase (ODC) in SS22 was small, and it was doubled in SS22-MOZ2 cells. The potential benefit of this relationship to both T. vaginalis and M. hominis is discussed

    Extensive Genetic Diversity, Unique Population Structure and Evidence of Genetic Exchange in the Sexually Transmitted Parasite Trichomonas vaginalis

    Get PDF
    The human parasite Trichomonas vaginalis causes trichomoniasis, the world's most common non-viral sexually transmitted infection. Research on T. vaginalis genetic diversity has been limited by a lack of appropriate genotyping tools. To address this problem, we recently published a panel of T. vaginalis-specific genetic markers; here we use these markers to genotype isolates collected from ten regions around the globe. We detect high levels of genetic diversity, infer a two-type population structure, identify clinically relevant differences between the two types, and uncover evidence of genetic exchange in what was believed to be a clonal organism. Together, these results greatly improve our understanding of the population genetics of T. vaginalis and provide insights into the possibility of genetic exchange in the parasite, with implications for the epidemiology and control of the disease. By taking into account the existence of different types and their unique characteristics, we can improve understanding of the wide range of symptoms that patients manifest and better implement appropriate drug treatment. In addition, by recognizing the possibility of genetic exchange, we are more equipped to address the growing concern of drug resistance and the mechanisms by which it may spread within parasite populations

    Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis

    Get PDF
    We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction with the shaping of metabolic pathways that likely transpired through lateral gene transfer from bacteria, and amplification of specific gene families implicated in pathogenesis and phagocytosis of host proteins may exemplify adaptations of the parasite during its transition to a urogenital environment. The genome sequence predicts previously unknown functions for the hydrogenosome, which support a common evolutionary origin of this unusual organelle with mitochondria

    Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at s\sqrt{s} = 7 TeV

    Get PDF
    The energy calibration and resolution of the electromagnetic calorimeter (ECAL) of the CMS detector have been determined using proton-proton collision data from LHC operation in 2010 and 2011 at a centre-of-mass energy of sqrt(s)=7 TeV with integrated luminosities of about 5 inverse femtobarns. Crucial aspects of detector operation, such as the environmental stability, alignment, and synchronization, are presented. The in-situ calibration procedures are discussed in detail and include the maintenance of the calibration in the challenging radiation environment inside the CMS detector. The energy resolution for electrons from Z-boson decays is better than 2% in the central region of the ECAL barrel (for pseudorapidity abs(eta)<0.8) and is 2-5% elsewhere. The derived energy resolution for photons from 125 GeV Higgs boson decays varies across the barrel from 1.1% to 2.6% and from 2.2% to 5% in the entraps. The calibration of the absolute energy is determined from Z to e+e- decays to a precision of 0.4% in the barrel and 0.8% in the endcaps

    Angular analysis of the decay B0K0μ+μB^0 \to K^{*0} \mu^+ \mu^- from pp collisions at s=8\sqrt s = 8 TeV

    No full text

    Performance of Electron Reconstruction and Selection with the CMS Detector in Proton-Proton Collisions at s\sqrt{s} = 8 TeV

    No full text
    The performance and strategies used in electron reconstruction and selection at CMS are presented based on data corresponding to an integrated luminosity of 19.7 fb1^{-1}, collected in proton-proton collisions at s\sqrt{s} = 8 TeV at the CERN LHC. The paper focuses on prompt isolated electrons with transverse momenta ranging from about 5 to a few 100 GeV. A detailed description is given of the algorithms used to cluster energy in the electromagnetic calorimeter and to reconstruct electron trajectories in the tracker. The electron momentum is estimated by combining the energy measurement in the calorimeter with the momentum measurement in the tracker. Benchmark selection criteria are presented, and their performances assessed using Z, Υ\Upsilon, and J/ψ\mathrm{J}/\psi decays into e+\mathrm{e}^+ + e\mathrm{e}^- pairs. The spectra of the observables relevant to electron reconstruction and selection as well as their global efficiencies are well reproduced by Monte Carlo simulations. The momentum scale is calibrated with an uncertainty smaller than 0.3%. The momentum resolution for electrons produced in Z boson decays ranges from 1.7 to 4.5%, depending on electron pseudorapidity and energy loss through bremsstrahlung in the detector material
    corecore