19 research outputs found

    Physiological and morphological properties of Dbx1-derived respiratory neurons in the pre-Botzinger complex of neonatal mice

    Get PDF
    Key points center dot The transcription factor Dbx1 gives rise to putatively respiratory rhythm-generating neurons in the pre-Botzinger complex. Comparative analysis of Dbx1-derived (Dbx1+) and non-Dbx1- derived (Dbx1) neurons can help elucidate the cellular bases of respiratory rhythm generation. center dot In vitro, Dbx1+ neurons activate earlier in the respiratory cycle, discharge larger magnitude inspiratory bursts and exhibit a lower rheobase compared with Dbx1 neurons. center dot The Dbx1+ neurons tend to express the intrinsic currents IA (transient outward A-current) and Ih (hyperpolarization-activated current) in diametric opposition, which may facilitate temporal summation of excitatory synaptic inputs, whereas the Dbx1 neurons show no significant pattern of expression regarding IA and Ih. center dot The Dbx1+ neurons exhibit smooth, spineless dendrites that project in the transverse plane, whereas the Dbx1 neurons are confined to the transverse plane to a lesser extent and sometimes exhibit spines. center dot The properties of Dbx1+ neurons that may contribute to respiratory rhythmogenesis include a high level of excitability linked to ongoing network activity and dendritic properties that may facilitate synaptic integration. Abstract Breathing in mammals depends on an inspiratory-related rhythm that is generated by glutamatergic neurons in the pre-Botzinger complex (preBotC) of the lower brainstem. A substantial subset of putative rhythm-generating preBotC neurons derive from a single genetic line that expresses the transcription factor Dbx1, but the cellular mechanisms of rhythmogenesis remain incompletely understood. To elucidate these mechanisms, we carried out a comparative analysis of Dbx1-expressing neurons (Dbx1+) and non-Dbx1-derived (Dbx1) neurons in the preBotC. Whole-cell recordings in rhythmically active newborn mouse slice preparations showed that Dbx1+ neurons activate earlier in the respiratory cycle and discharge greater magnitude inspiratory bursts compared with Dbx1 neurons. Furthermore, Dbx1+ neurons required less input current to discharge spikes (rheobase) in the context of network activity. The expression of intrinsic membrane properties indicative of A-current (IA) and hyperpolarization-activated current (Ih) tended to be mutually exclusive in Dbx1+ neurons. In contrast, there was no such relationship in the expression of currents IA and Ih in Dbx1 neurons. Confocal imaging and digital morphological reconstruction of recorded neurons revealed dendritic spines on Dbx1 neurons, but Dbx1+ neurons were spineless. The morphology of Dbx1+ neurons was largely confined to the transverse plane, whereas Dbx1 neurons projected dendrites to a greater extent in the parasagittal plane. The putative rhythmogenic nature of Dbx1+ neurons may be attributable, in part, to a higher level of intrinsic excitability in the context of network synaptic activity. Furthermore, Dbx1+ neuronal morphology may facilitate temporal summation and integration of local synaptic inputs from other Dbx1+ neurons, taking place largely in the dendrites, which could be important for initiating and maintaining bursts and synchronizing activity during the inspiratory phase

    Morphology of Dbx1 respiratory neurons in the preBotzinger complex and reticular formation of neonatal mice

    Get PDF
    The relationship between neuron morphology and function is a perennial issue in neuroscience. Information about synaptic integration, network connectivity, and the specific roles of neuronal subpopulations can be obtained through morphological analysis of key neurons within a microcircuit. Here we present morphologies of two classes of brainstem respiratory neurons. First, interneurons derived from Dbx1-expressing precursors (Dbx1 neurons) in the preBotzinger complex (preBotC) of the ventral medulla that generate the rhythm for inspiratory breathing movements. Second, Dbx1 neurons of the intermediate reticular formation that influence the motor pattern of pharyngeal and lingual movements during the inspiratory phase of the breathing cycle. We describe the image acquisition and subsequent digitization of morphologies of respiratory Dbx1 neurons from the preBotC and the intermediate reticular formation that were first recorded in vitro. These data can be analyzed comparatively to examine how morphology influences the roles of Dbx1 preBotC and Dbx1 reticular interneurons in respiration and can also be utilized to create morphologically accurate compartmental models for simulation and modeling of respiratory circuits

    Automated cell-specific laser detection and ablation of neural circuits in neonatal brain tissue

    Get PDF
    Key points center dot We developed an automated system that detects neurons belonging to specific populations in vitro or in situ, maps their physical locations in three-dimensional tissue specimens and then laser ablates the cell targets\u27 one at a time, in sequence, while monitoring neural population activity electrophysiologically. center dot Two-photon Ca2+ imaging and image processing routines detect and validate target neurons based on rhythmic Ca2+ fluorescence activity patterns. center dot Visible-wavelength confocal imaging and image processing routines detect and validate target neurons that express genetically encoded fluorescent proteins. center dot High-intensity two-photon spot scanning vaporizes target neurons with specificity while minimizing damage to neighbouring tissue. center dot Physiological monitoring of network function is performed before, during and after the cell-specific laser ablations to measure the effects on network functionality in real time. Abstract A key feature of neurodegenerative disease is the pathological loss of neurons that participate in generating behaviour. To investigate network properties of neural circuits and provide a complementary tool to study neurodegeneration in vitro or in situ, we developed an automated cell-specific laser detection and ablation system. The instrument consists of a two-photon and visible-wavelength confocal imaging setup, controlled by executive software, that identifies neurons in preparations based on genetically encoded fluorescent proteins or Ca2+ imaging, and then sequentially ablates cell targets while monitoring network function concurrently. Pathological changes in network function can be directly attributed to ablated cells, which are logged in real time. Here, we investigated brainstem respiratory circuits to demonstrate single-cell precision in ablation during physiological network activity, but the technique could be applied to interrogate network properties in neural systems that retain network functionality in reduced preparations in vitro or in situ

    Atoh1-dependent rhombic lip neurons are required for temporal delay between independent respiratory oscillators in embryonic mice

    Get PDF
    All motor behaviors require precise temporal coordination of different muscle groups. Breathing, for example, involves the sequential activation of numerous muscles hypothesized to be driven by a primary respiratory oscillator, the preBotzinger Complex, and at least one other as-yet unidentified rhythmogenic population. We tested the roles of Atoh1-, Phox2b-, and Dbx1-derived neurons (three groups that have known roles in respiration) in the generation and coordination of respiratory output in embryonic mice. We found that Dbx1-derived neurons are necessary for all respiratory behaviors, whereas independent but coupled respiratory rhythms persist from at least three different motor pools after eliminating or silencing Phox2b-or Atoh1-expressing hindbrain neurons. Without Atoh1 neurons, however, the motor pools become temporally disorganized and coupling between independent respiratory oscillators decreases. We propose Atoh1 neurons tune the sequential activation of independent oscillators essential for the fine control of different muscles during breathing

    Transcriptomes of Electrophysiologically Recorded Dbx1-derived Respiratory Neurons of the preBötzinger Complex in Neonatal Mice

    Get PDF
    Breathing depends on interneurons in the preBötzinger complex (preBötC) derived from Dbx1-expressing precursors. Here we investigate whether rhythm- and pattern-generating functions reside in discrete classes of Dbx1 preBötC neurons. In a slice model of breathing with ~ 5 s cycle period, putatively rhythmogenic Type-1 Dbx1 preBötC neurons activate 100–300 ms prior to Type-2 neurons, putatively specialized for output pattern, and 300–500 ms prior to the inspiratory motor output. We sequenced Type-1 and Type-2 transcriptomes and identified differential expression of 123 genes including ionotropic receptors (Gria3, Gabra1) that may explain their preinspiratory activation profiles and Ca2+ signaling (Cracr2a, Sgk1) involved in inspiratory and sigh bursts. Surprisingly, neuropeptide receptors that influence breathing (e.g., µ-opioid and bombesin-like peptide receptors) were only sparsely expressed, which suggests that cognate peptides and opioid drugs exert their profound effects on a small fraction of the preBötC core. These data in the public domain help explain the neural origins of breathing

    Transcriptome of Neonatal PreBotzinger Complex Neurones in Dbx1 Reporter Mice

    Get PDF
    We sequenced the transcriptome of brainstem interneurons in the specialized respiratory rhythmogenic site dubbed preBotzinger Complex (preBotC) from newborn mice. To distinguish molecular characteristics of the core oscillator we compared preBotC neurons derived from Dbx1-expressing progenitors that are respiratory rhythmogenic to neighbouring non-Dbx1-derived neurons, which support other respiratory and non-respiratory functions. Results in three categories are particularly salient. First, Dbx1 preBotC neurons express kappa-opioid receptors in addition to mu-opioid receptors that heretofore have been associated with opiate respiratory depression, which may have clinical applications. Second, Dbx1 preBotC neurons express the hypoxia-inducible transcription factor Hif1a at levels three-times higher than non-Dbx1 neurons, which links core rhythmogenic microcircuits to O-2-related chemosensation for the first time. Third, we detected a suite of transcription factors including Hoxa4 whose expression pattern may define the rostral preBotC border, Pbx3 that may influence ipsilateral connectivity, and Pax8 that may pertain to a ventrally-derived subset of Dbx1 preBotC neurons. These data establish the transcriptomic signature of the core respiratory oscillator at a perinatal stage of development

    Atoh1-dependent rhombic lip neurons are required for temporal delay between independent respiratory oscillators in embryonic mice

    Get PDF
    All motor behaviors require precise temporal coordination of different muscle groups. Breathing, for example, involves the sequential activation of numerous muscles hypothesized to be driven by a primary respiratory oscillator, the preBötzinger Complex, and at least one other as-yet unidentified rhythmogenic population. We tested the roles of Atoh1-, Phox2b-, and Dbx1-derived neurons (three groups that have known roles in respiration) in the generation and coordination of respiratory output. We found that Dbx1-derived neurons are necessary for all respiratory behaviors, whereas independent but coupled respiratory rhythms persist from at least three different motor pools after eliminating or silencing Phox2b- or Atoh1-expressing hindbrain neurons. Without Atoh1 neurons, however, the motor pools become temporally disorganized and coupling between independent respiratory oscillators decreases. We propose Atoh1 neurons tune the sequential activation of independent oscillators essential for the fine control of different muscles during breathing. DOI: http://dx.doi.org/10.7554/eLife.02265.00

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Role of NaV1.6-mediated persistent sodium current and bursting-pacemaker properties in breathing rhythm generation

    No full text
    Summary: Inspiration is the inexorable active phase of breathing. The brainstem pre-Bötzinger complex (preBötC) gives rise to inspiratory neural rhythm, but its underlying cellular and ionic bases remain unclear. The long-standing “pacemaker hypothesis” posits that the persistent Na+ current (INaP) that gives rise to bursting-pacemaker properties in preBötC interneurons is essential for rhythmogenesis. We tested the pacemaker hypothesis by conditionally knocking out and knocking down the Scn8a (Nav1.6 [voltage-gated sodium channel 1.6]) gene in core rhythmogenic preBötC neurons. Deleting Scn8a substantially decreases the INaP and abolishes bursting-pacemaker activity, which slows inspiratory rhythm in vitro and negatively impacts the postnatal development of ventilation. Diminishing Scn8a via genetic interference has no impact on breathing in adult mice. We argue that the Scn8a-mediated INaP is not obligatory but that it influences the development and rhythmic function of the preBötC. The ubiquity of the INaP in respiratory brainstem interneurons could underlie breathing-related behaviors such as neonatal phonation or rhythmogenesis in different physiological conditions
    corecore