240 research outputs found

    Polyhedral vesicles

    Full text link
    Polyhedral vesicles with a large bending modulus of the membrane such as the gel phase lipid membrane were studied using a Brownian dynamics simulation. The vesicles exhibit various polyhedral morphologies such as tetrahedron and cube shapes. We clarified two types of line defects on the edges of the polyhedrons: cracks of both monolayers at the spontaneous curvature of monolayer C0<0C_{\text {0}}<0, and a crack of the inner monolayer at C0≄0C_{\text {0}}\ge0. Around the latter defect, the inner monolayer curves positively. Our results suggested that the polyhedral morphology is controlled by C0C_{\text {0}}.Comment: 4 pages, 5 figure

    Interactions between cell surface protein disulphide isomerase and S-nitrosoglutathione during nitric oxide delivery

    Get PDF
    In this study, we investigated the role of protein disulphide isomerase (PDI) in rapid metabolism of S-nitrosoglutathione (GSNO) and S-nitrosoalbumin (albSNO) and in NO delivery from these compounds into cells. Incubation of GSNO or albSNO (1 ÎŒM) with the megakaryocyte cell line MEG-01 resulted in a cell-mediated removal of each compound which was inhibited by blocking cell surface thiols with 5,5â€Č-dithiobis 2-nitrobenzoic acid (DTNB) (100 ÎŒM) or inhibiting PDI with bacitracin (5 mM). GSNO, but not albSNO, rapidly inhibited platelet aggregation and stimulated cyclic GMP (cGMP) accumulation (used as a measure of intracellular NO entry). cGMP accumulation in response to GSNO (1 ÎŒM) was inhibited by MEG-01 treatment with bacitracin or DTNB, suggesting a role for PDI and surface thiols in NO delivery. PDI activity was present in MEG-01 conditioned medium, and was inhibited by high concentrations of GSNO (500 ÎŒM). A number of cell surface thiol-containing proteins were labelled using the impermeable thiol specific probe 3-(N-maleimido-propionyl) biocytin (MPB). Pretreatment of cells with GSNO resulted in a loss of thiol reactivity on some but not all proteins, suggesting selective cell surface thiol modification. Immunoprecipitation experiments showed that GSNO caused a concentration-dependent loss of thiol reactivity of PDI. Our data indicate that PDI is involved in both rapid metabolism of GSNO and intracellular NO delivery and that during this process PDI is itself altered by thiol modification. In contrast, the relevance of PDI-mediated albSNO metabolism to NO signalling is uncertain

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
    • 

    corecore