2,041 research outputs found

    Kinesthetic Exchanges between Cinematographers and Dancers: A Series of Screendance Interviews

    Get PDF
    This paper examines the kinesthetic exchanges between camera operators and dancers, and proposes that their creative methodologies and interpersonal relationships can enhance the making of a screendance. I discuss how I discovered this project, unpack the phrase “kinesthetic exchange,” and identify the cinematographer as the co-creator of a film’s kinesthesia. I also discussscreendances that prioritize mobile camera operation, and I speculate that shared kinesthesia between camera and dancer has the potential to kinesthetically and emotionally affect audiences. Included are six interviews of contemporary dance makers and filmmakers that speak to the kinesthetic connection between the dancer and camera operator, and how that relationship enlivens the two-dimensionality of the frame. It is my intention to offer varying perspectives about kinesthetic exchanges between camera operators and dancers, and how their relationships may influence the creative processes for the creation of screendances

    Maternal Serum VEGF Predicts Abnormally Invasive Placenta Better than NT-proBNP: a Multicenter Case-Control Study

    Get PDF
    The aim of this study was to test if maternal serum vascular endothelial growth factor (VEGF) or N-terminal pro B-type natriuretic peptide (NT-proBNP) predicts abnormally invasive placenta (AIP) better. Secondary objective was to test whether the serum levels of VEGF and NT-proBNP can predict the degree of invasion. In a multicenter case–control study design, gestational age-matched serum samples from pregnant women with AIP (n = 44) and uncomplicated pregnancies (n = 55) who had been enrolled at Charité – Universitätsmedizin Berlin, Germany and Centre Hospitalier Régional de la Citadelle in Liège, Belgium were analyzed. Maternal blood serum VEGF and NT-proBNP levels were immunoassayed from samples taken immediately before delivery (GA median: 35 weeks). Biomarker levels were compared between AIP and control group. The correlation of biomarker levels with the clinical AIP degree was assessed. The predictive biomarker ability was characterized through a multivariate regression model and receiver operating characteristic curves. Women with AIP had significantly lower maternal serum VEGF levels (AIP mean 285 pg/ml, 95% CI 248–322, vs. control: 391 pg/ml, 95% CI 356–426, p < 0.01) and higher NT-proBNP levels (AIP median 329 pg/ml, IQR 287–385, vs. control 295 pg/ml, IQR 273–356, p = 0.03). Maternal serum VEGF levels were able to predict AIP better (AUC = 0.729, 0.622–0.836, p < 0.001; VEGF + number of previous cesarean deliveries: AUC = 0.915, 0.853–0.977, p < 0.001). Maternal serum VEGF levels correlated inversely with the clinical AIP degree (r = − 0.32, p < 0.01). In short, maternal serum VEGF, more than NT-proBNP, can help in predicting AIP and hints at the degree of invasion

    Spectroscopic properties of Er3+ doped germanate glasses before and after a heat treatment process

    Get PDF
    In this paper structural, thermal and optical properties of Er3+ doped germanate glasses with the composition of 63.0GeO2-9.8Ga2O3-11.1BaO-4.9X-8.8Na2O-2.5Er2O3 (in mol%), where X = ZnO, TiO2, Al2O3 and Y2O3 are reported. The investigated glasses exhibit low phonon energies (<1000 cm−1) and high glass transition temperature varying between 588 and 642 °C. The Raman spectra evidence about different polymerization degree of the glasses. The thermal treatment leads to the precipitation of various crystals, the composition of which depends on the glass composition. According to the spectroscopic properties Er3+ ions are suspected to have similar local environment in the as-prepared glasses. However, Er-doped crystals are expected to precipitate upon devitrification, which leads to significant change of the spectroscopic properties, in particular increase in the intensity of upconversion and MIR emissions is observed. It is demonstrated that the glasses with Y2O3, ZnO and TiO2 are promising glasses especially for MIR applications.publishedVersionPeer reviewe

    Why every observatory needs a disco ball

    Full text link
    Commercial disco balls provide a safe, effective and instructive way of observing the Sun. We explore the optics of solar projections with disco balls, and find that while sunspot observations are challenging, the solar disk and its changes during eclipses are easy and fun to observe. We explore the disco ball's potential for observing the moon and other bright astronomical phenomena.Comment: 6 pages, 7 figures. Submitted to Physics Education. Comments welcom

    Asteroids Were Born Big

    Get PDF
    How big were the first planetesimals? We attempt to answer this question by conducting coagulation simulations in which the planetesimals grow by mutual collisions and form larger bodies and planetary embryos. The size frequency distribution (SFD) of the initial planetesimals is considered a free parameter in these simulations, and we search for the one that produces at the end objects with a SFD that is consistent with asteroid belt constraints. We find that, if the initial planetesimals were small (e.g. km-sized), the final SFD fails to fulfill these constraints. In particular, reproducing the bump observed at diameter D~100km in the current SFD of the asteroids requires that the minimal size of the initial planetesimals was also ~100km. This supports the idea that planetesimals formed big, namely that the size of solids in the proto-planetary disk ``jumped'' from sub-meter scale to multi-kilometer scale, without passing through intermediate values. Moreover, we find evidence that the initial planetesimals had to have sizes ranging from 100 to several 100km, probably even 1,000km, and that their SFD had to have a slope over this interval that was similar to the one characterizing the current asteroids in the same size-range. This result sets a new constraint on planetesimal formation models and opens new perspectives for the investigation of the collisional evolution in the asteroid and Kuiper belts as well as of the accretion of the cores of the giant planets.Comment: Icarus (2009) in pres

    The angular momentum of two collided rarefied preplanetesimals and the formation of binaries

    Full text link
    This paper studies the mean angular momentum associated with the collision of two celestial objects in the earliest stages of planet formation. Of primary concern is the scenario of two rarefied preplanetesimals (RPPs) in circular heliocentric orbits. The theoretical results are used to develop models of binary or multiple system formation from RPPs, and explain the observation that a greater fraction of binaries originated farther from the Sun. At the stage of RPPs, small-body satellites can form in two ways: a merger between RPPs can have two centers of contraction, or the formation of satellites from a disc around the primary or the secondary. Formation of the disc can be caused by that the angular momentum of the RPP formed by the merger is greater than the critical angular momentum for a solid body. One or several satellites of the primary (moving mainly in low-eccentricity orbits) can be formed from this disc at any separation less than the Hill radius. The first scenario can explain a system such as 2001 QW322 where the two components have similar masses but are separated by a great distance. In general, any values for the eccentricity and inclination of the mutual orbit are possible. Among discovered binaries, the observed angular momenta are smaller than the typical angular momenta expected for identical RPPs having the same total mass as the discovered binary and encountering each other in circular heliocentric orbits. This suggests that the population of RPPs underwent some contraction before mergers became common.Comment: 12 pages, Monthly Notices of Royal Astron. Society, in pres

    Spatially resolved H2 emission from the disk around T Tau N

    Full text link
    We report the detection of quiescent H2 emission in a spatially resolved ring-like structure within 100 AU of T Tau N. We present evidence to show that the emission most likely arises from shocks in the atmosphere of a nearly face-on disk around T Tau N. Using high spatial resolution 3D spectroscopic K-band data, we trace the spatial distribution of several H2 NIR rovibrational lines in the vicinity of T Tau N. We detect weak H2 emission from the v=1-0 S(0), S(1), Q(1) lines and the v=2-1 S(1) line in a ring-like structure around T Tau N between 0.1'' (~15 AU) and 0.7'' (~100AU) from the star. The v=1-0 S(0) and v=2-1 S(1) lines are detected only in the outer parts of the ring structure. Closer to the star, the strong continuum limits our sensitivity to these lines. The total flux of the v=1-0 S(1) line is 1.8 *10^{-14} ergs s^{-1}cm^{-2}, similar to previous measurements of H2 in circumstellar disks. The velocity of the H2 emitting gas around T Tau N is consistent with the rest velocity of the star, and the H2 does not seem to be part of a collimated outflow. Both shocks impinging on the surface of a disk and irradiation of a disk by UV-photons and X-rays from the central star are plausible candidates for the H2 excitation mechanism. However, irradiation should not create a large degree of excitation at radii larger than 20 AU. Most likely the H2 emission arises in the atmosphere of a flared disk with radius 85-100 AU and mass 0.005-0.5Msun, where the gas is excited by shocks created when a wide-angle wind impinges on the disk. The H2 emission could also originate from shock excitation in the cavity walls of an envelope, but this requires an unusually high velocity of the wide-angle wind from T Tau N.Comment: Accepted by A&

    Strong molecular hydrogen emission and kinematics of the multiphase gas in radio galaxies with fast jet-driven outflows

    Get PDF
    Observations of ionized and neutral gas outflows in radio-galaxies (RGs) suggest that AGN radio jet feedback has a galaxy-scale impact on the host ISM, but it is still unclear how the molecular gas is affected. We present deep Spitzer IRS spectroscopy of 8 RGs that show fast HI outflows. All of these HI-outflow RGs have bright H2 mid-IR lines that cannot be accounted for by UV or X-ray heating. This suggests that the radio jet, which drives the HI outflow, is also responsible for the shock-excitation of the warm H2 gas. In addition, the warm H2 gas does not share the kinematics of the ionized/neutral gas. The mid-IR ionized gas lines are systematically broader than the H2 lines, which are resolved by the IRS (with FWHM up to 900km/s) in 60% of the detected H2 lines. In 5 sources, the NeII line, and to a lesser extent the NeIII and NeV lines, exhibit blue-shifted wings (up to -900km/s with respect to the systemic velocity) that match the kinematics of the outflowing HI or ionized gas. The H2 lines do not show broad wings, except tentative detections in 3 sources. This shows that, contrary to the HI gas, the H2 gas is inefficiently coupled to the AGN jet-driven outflow of ionized gas. While the dissipation of a small fraction (<10%) of the jet kinetic power can explain the dynamical heating of the molecular gas, our data show that the bulk of the warm molecular gas is not expelled from these galaxies.Comment: 26 pages, 15 figures, Accepted for ublication in Ap

    CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules

    Get PDF
    The CD45 phosphatase is uniquely expressed by all leukocytes, but its role in regulating hematopoietic progenitors is poorly understood. We show that enhanced CD45 expression on bone marrow (BM) leukocytes correlates with increased cell motility in response to stress signals. Moreover, immature CD45 knockout (KO) cells showed defective motility, including reduced homing (both steady state and in response to stromal-derived factor 1) and reduced granulocyte colony-stimulating factor mobilization. These defects were associated with increased cell adhesion mediated by reduced matrix metalloproteinase 9 secretion and imbalanced Src kinase activity. Poor mobilization of CD45KO progenitors by the receptor activator of nuclear factor κB ligand, and impaired modulation of the endosteal components osteopontin and stem cell factor, suggested defective osteoclast function. Indeed, CD45KO osteoclasts exhibited impaired bone remodeling and abnormal morphology, which we attributed to defective cell fusion and Src function. This led to irregular distribution of metaphyseal bone trabecules, a region enriched with stem cell niches. Consequently, CD45KO mice had less primitive cells in the BM and increased numbers of these cells in the spleen, yet with reduced homing and repopulation potential. Uncoupling environmental and intrinsic defects in chimeric mice, we demonstrated that CD45 regulates progenitor movement and retention by influencing both the hematopoietic and nonhematopoietic compartments
    corecore