779 research outputs found

    Expression of the autoimmune Fcgr2b NZW allele fails to be upregulated in germinal center B cells and is associated with increased IgG production

    Get PDF
    The inhibitory receptor FcγRIIb regulates B-cell functions. Genetic studies have associated Fcgr2b polymorphisms and lupus susceptibility in both humans and murine models, in which B cells express reduced FcγRIIb levels. Furthermore, FcγRIIb absence results in lupus on the appropriate genetic background, and lentiviral-mediated FcγRIIb overexpression prevents disease in the NZM2410 lupus mouse. The NZM2410/NZW allele Fcgr2b is, however, located in-between Sle1a and Sle1b, two potent susceptibility loci, making it difficult to evaluate Fcr2bNZW independent contribution. By using two congenic strains that each carries only Sle1a (B6.Sle1a(15–353)), or Fcr2bNZW in the absence of Sle1a or Sle1b (B6.Sle1(111–148)), we show that the Fcr2bNZW allele does not upregulate its expression on germinal center B cells and plasma cells, as does the C57BL/6 allele on B6.Sle1a(15–353) B cells. Furthermore, in the absence of the flanking Sle1a and Sle1b, Fcr2bNZW does not produce an autoimmune phenotype, but is associated with an increased number of class-switched plasma cells. These results show that while a lower level of FcγRIIb does not by itself induce the development of autoreactive B cells, it has the potential to amplify the contribution of autoreactive B cells induced by other lupus-susceptibility loci by enhancing the production of class-switched plasma cells

    Monitoring kinetic and frequency-domain properties of eyelid responses in mice with magnetic distance measurement technique

    Get PDF
    Classical eye-blink conditioning in mutant mice can be used to study the molecular mechanisms underlying associative learning. To measure the kinetic and frequency domain properties of conditioned (tone - periorbital shock procedure) and unconditioned eyelid responses in freely moving mice, we developed a method that allows adequate, absolute, and continuous determination of their eyelid movements in time and space while using an electrical shock as the unconditioned stimulus. The basic principle is to generate a local magnetic field that moves with the animal and that is picked up by either a field-sensitive chip or coil. With the use of this magnetic distance measurement technique (MDMT), but not with the use of electromyographic recordings, we were able to measure mean latency, peak amplitude, velocity, and acceleration of unconditioned eyelid responses, which equaled 7.9 +/- 0.2 ms, 1.2 +/- 0.02 mm, 28.5 +/- 1 mm/s, and 637 +/- 22 mm/s(2), respectively (means +/- SD). During conditioning, the mice reached an average of 78% of conditioned responses over four training sessions, while animals that were subjected to randomly paired conditioned and unconditioned stimuli showed no significant increases. The mean latency of the conditioned responses decreased from 222 +/- 40 ms in session 2 to 127 +/- 6 ms in session 4, while their mean peak latency increased from 321 +/- 45 to 416 +/- 67 ms. The mean peak amplitudes, peak velocities, and peak acceleration of these responses increased from 0.62 +/- 0.02 to 0.77 +/- 0.02 mm, from 3.9 +/- 0.3 to 7.7 +/- 0.5 mm/s, and from 81 +/- 7 to 139 +/- 10 mm/s(2), respectively. Power spectra of acceleration records illustrated that both the unconditioned and conditioned responses of mice had oscillatory properties with a dominant peak frequency close to 25 Hz that was not dependent on training session, interstimulus interval, or response size. These data show that MDMT can be used to measure the kinetics and frequency domain properties of conditioned eyelid responses in mice and that these properties follow the dynamic characteristics of other mammals

    A Prospective Analysis of Elevated Fasting Glucose Levels and Cognitive Function in Older People: Results From PROSPER and the Rotterdam Study

    Get PDF
    OBJECTIVE-To investigate the relationship between fasting glucose levels, insulin resistance, and cognitive impairment in old age. Diabetes is associated with cognitive impairment in older people. However, the link between elevated fasting glucose levels and insulin resistance in nondiabetic individuals, and the risk of cognitive impairment is unclear. RESEARCH DESIGN AND METHODS-We analyzed data from, in total, 8,447 participants in two independent prospective studies: the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER), 5,019 participants, aged 69-84 years, and the Rotterdam Study, 3,428 participants, aged 61-97 years. Fasting glucose levels were assessed at baseline in both studies; fasting insulin levels were assessed in the Rotterdam Study only. Cognitive function was assessed in both studies at baseline and during follow-up. RESULTS-Subjects with diabetes had impaired cognitive function at baseline. In contrast, in people without a history of diabetes, there was no clear association between baseline fasting glucose levels and executive function and memory, nor was there a consistent relationship between elevated baseline fasting glucose levels and the rate of cognitive decline in either cohort. Insulin resistance (homeostasis model assessment index) was also unrelated to cognitive function and decline. CONCLUSIONS-Elevated fasting glucose levels and insulin resistance are not associated with worse cognitive function in older people without a history of diabetes. These data suggest either that there is a threshold for effects of dysglycemia on cognitive function or that factors other than hyperglycemia contribute to cognitive impairment in individuals with frank diabetes

    Boson Expansion Methods in (1+1)-dimensional Light-Front QCD

    Full text link
    We derive a bosonic Hamiltonian from two dimensional QCD on the light-front. To obtain the bosonic theory we find that it is useful to apply the boson expansion method which is the standard technique in quantum many-body physics. We introduce bilocal boson operators to represent the gauge-invariant quark bilinears and then local boson operators as the collective states of the bilocal bosons. If we adopt the Holstein-Primakoff type among various representations, we obtain a theory of infinitely many interacting bosons, whose masses are the eigenvalues of the 't Hooft equation. In the large NN limit, since the interaction disappears and the bosons are identified with mesons, we obtain a free Hamiltonian with infinite kinds of mesons.Comment: 20 pages, latex, no figures, journal version (no significant changes), to appear in Phys. Rev.

    Angular momenta creation in relativistic electron-positron plasma

    Get PDF
    Creation of angular momentum in a relativistic electron-positron plasma is explored. It is shown that a chain of angular momentum carrying vortices is a robust asymptotic state sustained by the generalized nonlinear Schrodinger equation characteristic to the system. The results may suggest a possible electromagnetic origin of angular momenta when it is applied to the MeV epoch of the early Universe.Comment: 20 pages, 6 figure

    Anterior thalamic nuclei neurons sustain memory

    Get PDF
    A hippocampal-diencephalic-cortical network supports memory function. The anterior thalamic nuclei (ATN) form a key anatomical hub within this system. Consistent with this, injury to the mammillary body-ATN axis is associated with examples of clinical amnesia. However, there is only limited and indirect support that the output of ATN neurons actively enhances memory. Here, in rats, we first showed that mammillothalamic tract (MTT) lesions caused a persistent impairment in spatial working memory. MTT lesions also reduced rhythmic electrical activity across the memory system. Next, we introduced 8.5 Hz optogenetic theta-burst stimulation of the ATN glutamatergic neurons. The exogenously-triggered, regular pattern of stimulation produced an acute and substantial improvement of spatial working memory in rats with MTT lesions and enhanced rhythmic electrical activity. Neither behaviour nor rhythmic activity was affected by endogenous stimulation derived from the dorsal hippocampus. Analysis of immediate early gene activity, after the rats foraged for food in an open field, showed that exogenously-triggered ATN stimulation also increased Zif268 expression across memory-related structures. These findings provide clear evidence that increased ATN neuronal activity supports memory. They suggest that ATN-focused gene therapy may be feasible to counter clinical amnesia associated with dysfunction in the mammillary body-ATN axis

    The distribution of heartwater in the highveld of Zimbabwe, 1980-1997

    Get PDF
    Heartwater, the tick-borne disease caused by the rickettsia Cowdria ruminantium has historically been confined to the southern and western lowvelds of Zimbabwe. Since 1986, however, cases of heartwater have been diagnosed with increasing frequency in the central and eastern regions of the previously heartwater-free highveld plateau. During the same period, collections of the two major tick vectors of heartwater in Zimbabwe, Amblyomma hebraeum and Amblyomma variegatum, were made for the first time in these areas, suggesting that spread of these ticks was responsible for the changed distribution of the disease. The factors associated with this spread have not been determined, but increased cattle and wildlife movement and reduced intensity of dipping undoubtedly play important roles. Currently, the distribution of heartwater and its vectors in the highveld is still largely restricted to the central and eastern regions. The northern regions of the highveld appear to be predominantly uninfected, though it is likely that, eventually, heartwater will spread further with considerable impact on livestock production in Zimbabwe.The articles have been scanned in colour with a HP Scanjet 5590; 600dpi. Adobe Acrobat X Pro was used to OCR the text and also for the merging and conversion to the final presentation PDF-format.United States Agency tor International Development.mn201

    An action for the exact string black hole

    Full text link
    A local action is constructed describing the exact string black hole discovered by Dijkgraaf, Verlinde and Verlinde in 1992. It turns out to be a special 2D Maxwell-dilaton gravity theory, linear in curvature and field strength. Two constants of motion exist: mass M>1, determined by the level k, and U(1)-charge Q>0, determined by the value of the dilaton at the origin. ADM mass, Hawking temperature T_H \propto \sqrt{1-1/M} and Bekenstein-Hawking entropy are derived and studied in detail. Winding/momentum mode duality implies the existence of a similar action, arising from a branch ambiguity, which describes the exact string naked singularity. In the strong coupling limit the solution dual to AdS_2 is found to be the 5D Schwarzschild black hole. Some applications to black hole thermodynamics and 2D string theory are discussed and generalizations - supersymmetric extension, coupling to matter and critical collapse, quantization - are pointed out.Comment: 41 pages, 2 eps figures, dedicated to Wolfgang Kummer on occasion of his Emeritierung; v2: added ref; v3: extended discussion in sections 3.2, 3.3 and at the end of 5.3 by adding 2 pages of clarifying text; updated refs; corrected typo

    Dyson-Schwinger Equations: Density, Temperature and Continuum Strong QCD

    Get PDF
    Continuum strong QCD is the application of models and continuum quantum field theory to the study of phenomena in hadronic physics, which includes; e.g., the spectrum of QCD bound states and their interactions; and the transition to, and properties of, a quark gluon plasma. We provide a contemporary perspective, couched primarily in terms of the Dyson-Schwinger equations but also making comparisons with other approaches and models. Our discourse provides a practitioners' guide to features of the Dyson-Schwinger equations [such as confinement and dynamical chiral symmetry breaking] and canvasses phenomenological applications to light meson and baryon properties in cold, sparse QCD. These provide the foundation for an extension to hot, dense QCD, which is probed via the introduction of the intensive thermodynamic variables: chemical potential and temperature. We describe order parameters whose evolution signals deconfinement and chiral symmetry restoration, and chronicle their use in demarcating the quark gluon plasma phase boundary and characterising the plasma's properties. Hadron traits change in an equilibrated plasma. We exemplify this and discuss putative signals of the effects. Finally, since plasma formation is not an equilibrium process, we discuss recent developments in kinetic theory and its application to describing the evolution from a relativistic heavy ion collision to an equilibrated quark gluon plasma.Comment: 103 Pages, LaTeX, epsfig. To appear in Progress in Particle and Nuclear Physics, Vol. 4
    corecore