7 research outputs found

    Engineered Nanoparticles Interact with Nutrients to Intensify Eutrophication in a Wetland Ecosystem Experiment

    Get PDF
    Despite the rapid rise in diversity and quantities of engineered nanomaterials produced, the impacts of these emerging contaminants on the structure and function of ecosystems have received little attention from ecologists. Moreover, little is known about how manufactured nanomaterials may interact with nutrient pollution in altering ecosystem productivity, despite the recognition that eutrophication is the primary water quality issue in freshwater ecosystems worldwide. In this study, we asked two main questions: (1) To what extent do manufactured nanoparticles affect the biomass and productivity of primary producers in wetland ecosystems? (2) How are these impacts mediated by nutrient pollution? To address these questions, we examined the impacts of a citrate‐coated gold nanoparticle (AuNPs) and of a commercial pesticide containing Cu(OH)2 nanoparticles (CuNPs) on aquatic primary producers under both ambient and enriched nutrient conditions. Wetland mesocosms were exposed repeatedly with low concentrations of nanoparticles and nutrients over the course of a 9‐month experiment in an effort to replicate realistic field exposure scenarios. In the absence of nutrient enrichment, there were no persistent effects of AuNPs or CuNPs on primary producers or ecosystem productivity. However, when combined with nutrient enrichment, both NPs intensified eutrophication. When either of these NPs were added in combination with nutrients, algal blooms persisted for \u3e 50 d longer than in the nutrient‐only treatment. In the AuNP treatment, this shift from clear waters to turbid waters led to large declines in both macrophyte growth and rates of ecosystem gross primary productivity (average reduction of 52% ± 6% and 92% ± 5%, respectively) during the summer. Our results suggest that nutrient status greatly influences the ecosystem‐scale impact of two emerging contaminants and that synthetic chemicals may be playing an under‐appreciated role in the global trends of increasing eutrophication. We provide evidence here that chronic exposure to Au and Cu(OH)2 nanoparticles at low concentrations can intensify eutrophication of wetlands and promote the occurrence of algal blooms

    Are aquatic food webs vulnerable to copper and gold engineered nanoparticles?

    No full text
    Freshwater ecosystems are exposed to engineered nanoparticles through municipal and industrial wastewater-effluent discharges and agricultural non-point source runoff. These same anthropogenic waste streams which contain high concentrations and diversity of nanoparticles also contain excess nitrogen and phosphorus. The interaction between nanoparticles (NPs) and nutrients remains poorly understood within the context of aquatic food webs. To address this interaction, I examined the impacts of a citrate-coated gold nanoparticle (AuNPs) and a commercial pesticide containing Cu(OH)2 nanoparticles (CuNPs) on aquatic food webs under both ambient and enriched nutrient conditions. In the 2016 CEINT Wetland Mesocosm study, mesocosms were exposed repeatedly with low, environmentally realistic concentrations of nanoparticles and nutrients over the course of a 9-month experiment. My work during this study determined decreased insect emergence in nanoparticle treatments, aquatic to riparian metal export via aquatic insect emergence, and subsequent metal accumulation in riparian spiders. In that same study, I demonstrated that consumers exposed to nanoparticles doubled excretion rates of nitrogen and phosphorus and likely contributed to the increased persistence of algal blooms as observed in our mesocosm experiment. To address these findings, I designed and executed a stream microcosm experiment to validate and mechanistically understand ecological responses observed in our mesocosm study, increased consumer nutrient excretion rates and persistence of algal blooms. The microcosm study demonstrated a high impact of dissolved gold to algal biomass, nutrient uptake, and bacterial community composition of both periphyton and snail gut. Engineered NPs and nutrients have significant and quantifiable effects on aquatic ecosystems, though responses may not be easily measured or are sub-lethal, in many cases and require monitoring over long time periods. Overall, my results suggest that 1) NPs decrease insect emergence and exhibit trophic transfer from aquatic insects to riparian spiders and 2) double consumer mediated nutrient recycling rates resulting in a higher availability of nutrients available for plant uptake and 3) increase the algal biomass and alter microbial communities in periphyton and snail gut microbiome. Thus, the long-term effects of NPs and nutrients in aquatic ecosystems could significantly alter aquatic ecosystem function. Aquatic food webs are indeed vulnerable to engineered nanoparticles

    Copper and Gold Nanoparticles Increase Nutrient Excretion Rates of Primary Consumers

    No full text
    Freshwater ecosystems are exposed to engineered nanoparticles through municipal and industrial wastewater-effluent discharges and agricultural nonpoint source runoff. Because previous work has shown that engineered nanoparticles from these sources can accumulate in freshwater algal assemblages, we hypothesized that nanoparticles may affect the biology of primary consumers by altering the processing of two critical nutrients associated with growth and survivorship, nitrogen and phosphorus. We tested this hypothesis by measuring the excretion rates of nitrogen and phosphorus of Physella acuta, a ubiquitous pulmonate snail that grazes heavily on periphyton, exposed to either copper or gold engineered nanoparticles for 6 months in an outdoor wetland mesocosm experiment. Chronic nanoparticle exposure doubled nutrient excretion when compared to the control. Gold nanoparticles increased nitrogen and phosphorus excretion rates more than copper nanoparticles, but overall, both nanoparticles led to higher consumer excretion, despite contrasting particle stability and physiochemical properties. Snails in mesocosms enriched with nitrogen and phosphorus had overall higher excretion rates than ones in ambient (no nutrients added) mesocosms. Stimulation patterns were different between nitrogen and phosphorus excretion, which could have implications for the resulting nutrient ratio in the water column. These results suggest that low concentrations of engineered nanoparticles could alter the metabolism of consumers and increase consumer-mediated nutrient recycling rates, potentially intensifying eutrophication in aquatic systems, for example, the increased persistence of algal blooms as observed in our mesocosm experiment

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic : an international, multicenter, comparative cohort study

    No full text
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Delaying surgery for patients with a previous SARS-CoV-2 infection

    Get PDF
    Not availabl

    Elective Cancer Surgery in COVID-19–Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study

    No full text
    corecore