80 research outputs found

    Red Hill Cemetery Project: Creating a Cultural Heritage Database

    Get PDF
    This age of booming technological advancement has brought a breadth of new opportunities for understanding and documenting history, from digital mapping to database-building capabilities unrivaled in past historical efforts, opportunities which the research team behind the Red Hill Cemetery Project are utilizing in the effort to develop a virtual cemetery. The research team, in cooperation with the Okefenokee Heritage Center and the community of Waycross, seek to develop a scholarly understanding, grounded in consideration of the community and its history, of the oldest African-American cemetery in Waycross, Georgia. The physical cemetery, now overgrown and suffering from decades-long neglect and vandalism, holds an estimated 2000 burials. The team is focused on four projects. First, developing an application for inclusion of the cemetery on the National Register of Historic Places. Second, using innovative photographic and mapping technologies to build an accessible interactive map of the physical conditions of Red Hill Cemetery, the research will culminate in the digital reconstruction of the original cemetery layout. Third, the development of a public biographical database that includes all identifiable individuals buried at Red Hill. Fourth, the team will collect, transcribe, and publish oral histories of the site and the larger Waycross African American Community, aiming to preserve the voices of Waycross before they are irretrievably lost. Website:https://davidsheffler.domains.unf.edu/redhillcemetery

    Binding of Extracellular Maspin to 1 Integrins Inhibits Vascular Smooth Muscle Cell Migration

    Get PDF
    Maspin is a serpin that has multiple effects on cell behavior, including inhibition of migration. How maspin mediates these diverse effects remains unclear, as it is devoid of protease inhibitory activity. We have previously shown that maspin rapidly inhibits the migration of vascular smooth muscle cells (VSMC), suggesting the involvement of direct interactions with cell surface proteins. Here, using immunofluorescence microscopy, we demonstrate that maspin binds specifically to the surface of VSMC in the dedifferentiated, but not the differentiated, phenotype. Ligand blotting of VSMC lysates revealed the presence of several maspin-binding proteins, with a protein of 150 kDa differentially expressed between the two VSMC phenotypes. Western blotting suggested that this protein was the ß1 integrin subunit, and subsequently both a3ß1 and a5ß1, but not avß3, were shown to associate with maspin by coimmunoprecipitation. Specific binding of these integrins was also observed using maspin-affinity chromatography, using HT1080 cell lysates. Direct binding of maspin to a5ß1 was confirmed using a recombinant a5ß1-Fc fusion protein. Using conformation-dependent anti-ß1 antibodies, maspin binding to VSMC was found to lead to a decrease in the activation status of the integrin. The functional involvement of a5ß1 in mediating the effect of maspin was established by the inhibition of migration of CHO cells overexpressing human a5 integrin, but not those lacking a5 expression. Our observations suggest that maspin engages in specific interactions with a limited number of integrins on VSMC, leading to their inactivation, and that these interactions are responsible for the effects of maspin in the pericellular environment

    Validation of standard operating procedures in a multicenter retrospective study to identify-omics biomarkers for chronic low back pain

    Get PDF
    Chronic low back pain (CLBP) is one of the most common medical conditions, ranking as the greatest contributor to global disability and accounting for huge societal costs based on the Global Burden of Disease 2010 study. Large genetic and -omics studies provide a promising avenue for the screening, development and validation of biomarkers useful for personalized diagnosis and treatment (precision medicine). Multicentre studies are needed for such an effort, and a standardized and homogeneous approach is vital for recruitment of large numbers of participants among different centres (clinical and laboratories) to obtain robust and reproducible results. To date, no validated standard operating procedures (SOPs) for genetic/-omics studies in chronic pain have been developed. In this study, we validated an SOP model that will be used in the multicentre (5 centres) retrospective “PainOmics” study, funded by the European Community in the 7th Framework Programme, which aims to develop new biomarkers for CLBP through three different -omics approaches: genomics, glycomics and activomics. The SOPs describe the specific procedures for (1) blood collection, (2) sample processing and storage, (3) shipping details and (4) cross-check testing and validation before assays that all the centres involved in the study have to follow. Multivariate analysis revealed the absolute specificity and homogeneity of the samples collected by the five centres for all genetics, glycomics and activomics analyses. The SOPs used in our multicenter study have been validated. Hence, they could represent an innovative tool for the correct management and collection of reliable samples in other large-omics-based multicenter studies

    Proceedings from the Turner Resource Network symposium: The crossroads of health care research and health care delivery

    Get PDF
    Turner syndrome, a congenital condition that affects ∼1/2,500 births, results from absence or structural alteration of the second sex chromosome. There has been substantial effort by numerous clinical and genetic research groups to delineate the clinical, pathophysiological, cytogenetic, and molecular features of this multisystem condition. Questions about the molecular-genetic and biological basis of many of the clinical features remain unanswered, and health care providers and families seek improved care for affected individuals. The inaugural “Turner Resource Network (TRN) Symposium” brought together individuals with Turner syndrome and their families, advocacy group leaders, clinicians, basic scientists, physician-scientists, trainees and other stakeholders with interest in the well-being of individuals and families living with the condition. The goal of this symposium was to establish a structure for a TRN that will be a patient-powered organization involving those living with Turner syndrome, their families, clinicians, and scientists. The TRN will identify basic and clinical questions that might be answered with registries, clinical trials, or through bench research to promote and advocate for best practices and improved care for individuals with Turner syndrome. The symposium concluded with the consensus that two rationales justify the creation of a TRN: 1. inadequate attention has been paid to the health and psychosocial issues facing girls and women who live with Turner syndrome; 2. investigations into the susceptibility to common disorders such as cardiovascular or autoimmune diseases caused by sex chromosome deficiencies will increase understanding of disease susceptibilities in the general population.Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant 1R13HD079209-01)March of Dimes Birth Defects FoundationAmerican Heart AssociationNational Institutes of Health (U.S.) Office of Women's HealthLeaping Butterfly MinistryTurner Syndrome Society of the United State

    New Insights into the Role of MHC Diversity in Devil Facial Tumour Disease

    Get PDF
    Devil facial tumour disease (DFTD) is a fatal contagious cancer that has decimated Tasmanian devil populations. The tumour has spread without invoking immune responses, possibly due to low levels of Major Histocompatibility Complex (MHC) diversity in Tasmanian devils. Animals from a region in north-western Tasmania have lower infection rates than those in the east of the state. This area is a genetic transition zone between sub-populations, with individuals from north-western Tasmania displaying greater diversity than eastern devils at MHC genes, primarily through MHC class I gene copy number variation. Here we test the hypothesis that animals that remain healthy and tumour free show predictable differences at MHC loci compared to animals that develop the disease

    Food Insecurity Prevalence Across Diverse Sites During COVID-19: A Year of Comprehensive Data

    Get PDF
    Key Findings NFACT includes 18 study sites in 15 states as well as a national poll, collectively representing a sample size of more than 26,000 people. Some sites have implemented multiple survey rounds, here we report results from 22 separate surveys conducted during the year since the COVID-19 pandemic began in March 2020. 18 out of 19 surveys in 14 sites with data for before and since the pandemic began found an increase in food insecurity since the start of the COVID-19 pandemic as compared to before the pandemic. In nearly all surveys (18/19) that measured food insecurity both before and during the pandemic, more Black, Indigenous, and People of Color (BIPOC) were classified as food insecure during the pandemic as compared to before it began. Prevalence of food insecurity for BIPOC respondents was higher than the overall population in the majority of surveys (19/20) sampling a general population. In almost all surveys (21/22), the prevalence of food insecurity for households with children was higher than the overall prevalence of food insecurity. Food insecurity prevalence was higher for households experiencing a negative job impact during the pandemic (i.e. job loss, furlough, reduction in hours) in nearly all surveys and study sites (21/22). Food insecurity prevalence in most sites was significantly higher before COVID-19 than estimates from that time period. Reporting a percent change between pre and during COVID-19 prevalence may provide additional information about the rate of change in food insecurity since the start of the pandemic, which absolute prevalence of food insecurity may not capture. Results highlight consistent trends in food insecurity outcomes since the start of the COVID-19 pandemic, across diverse study sites, methodological approaches, and time

    Patterns of Ancestry, Signatures of Natural Selection, and Genetic Association with Stature in Western African Pygmies

    Get PDF
    African Pygmy groups show a distinctive pattern of phenotypic variation, including short stature, which is thought to reflect past adaptation to a tropical environment. Here, we analyze Illumina 1M SNP array data in three Western Pygmy populations from Cameroon and three neighboring Bantu-speaking agricultural populations with whom they have admixed. We infer genome-wide ancestry, scan for signals of positive selection, and perform targeted genetic association with measured height variation. We identify multiple regions throughout the genome that may have played a role in adaptive evolution, many of which contain loci with roles in growth hormone, insulin, and insulin-like growth factor signaling pathways, as well as immunity and neuroendocrine signaling involved in reproduction and metabolism. The most striking results are found on chromosome 3, which harbors a cluster of selection and association signals between approximately 45 and 60 Mb. This region also includes the positional candidate genes DOCK3, which is known to be associated with height variation in Europeans, and CISH, a negative regulator of cytokine signaling known to inhibit growth hormone-stimulated STAT5 signaling. Finally, pathway analysis for genes near the strongest signals of association with height indicates enrichment for loci involved in insulin and insulin-like growth factor signaling

    Формирование эмоциональной культуры как компонента инновационной культуры студентов

    Get PDF
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been
    corecore